COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 19 & 20 (Normal forms, Herbrand's Theorem)

Kumar Madhukar

madhukar@cse.iitd.ac.in

October 16th and 19th, 2023

A predicate logic formula is in prenex normal form if it written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix.

 $Q_1y_1Q_2y_2\ldots Q_ny_n F$

where $Q_i \in \{\forall, \exists\}$, $n \ge 0$, and F contains no quantifiers.

Every formula is equivalent to a formula in prenex normal form.

$$\neg(\exists x \ P(x,y) \lor \forall z \ Q(z)) \land \exists w \ Q(w)$$

If t is a term and F is a formula such that no variable in t occurs bound in F,

then $\mathcal{A} \models F[t/x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

Let F denote the formula $Q \times G$ where Q is a quantifier. Let y be a variable that does not occur in G.

Then $F \equiv Qy \ (G[y/x])$.

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula refer to different variables.

You can rectify a formula by renaming bound variables.

Example: $\forall x \exists y \ P(x, f(y)) \land \forall y \ (Q(x, y) \lor R(x))$

Every formula is equivalent to a rectified formula in prenex form.

We say that a rectified prenex formula is in Skolem form if it does not contain any occurrence of the existential quantifier.

A rectified prenex formula can be transformed to an equisatisfiable formula in Skolem form by using extra function symbols.

 $\forall x \exists y \ P(x, y) \text{ and } \forall x \ P(x, f(x)) \text{ are equisatisfiable.}$

Let $F = \forall y_1 \ \forall y_2 \ \dots \ \forall y_n \ \exists z \ G$ be a rectified formula. Given a function symbol f of arity n that does not appear in F, write

 $F' = \forall y_1 \ \forall y_2 \ \dots \ \forall y_n \ G[f(y_1, y_2, \dots, y_n)/z].$

Then F and F' are equisatisfiable.

$\forall x \exists y \forall z \exists w (\neg P(a, w) \lor Q(f(x), y))$

Let F denote the formula $Qx \ G$ where Q is a quantifier. Let y be a variable that does not occur in G.

Then $F \equiv Qy$ (G[y/x]).

Proof:

Let $F = \forall y_1 \ \forall y_2 \ \dots \ \forall y_n \ \exists z \ G$ be a rectified formula. Given a function symbol f of arity n that does not appear in F, write

 $F' = \forall y_1 \ \forall y_2 \ \dots \ \forall y_n \ G[f(y_1, y_2, \dots, y_n)/z].$

Then F and F' are equisatisfiable.

Proof:

If t is a term and F is a formula such that no variable in t occurs bound in F,

then $\mathcal{A} \models F[t/x]$ iff $\mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

Proof: reading exercise

universe is the set of ground terms

terms and function symbols being interpreted "as themselves"

built from syntax

Definition 1. Let σ be a signature with at least one constant symbol. A σ -structure \mathcal{H} is called a *Herbrand structure* if the following hold:

- 1. The universe $U_{\mathcal{H}}$ is the set of ground terms over σ .
- 2. For every constant symbol c in σ we have $c_{\mathcal{H}} = c$.
- 3. For every k-ary function symbol f in σ and for all ground terms $t_1, t_2, \ldots, t_n \in U_{\mathcal{H}}$ we have $f_{\mathcal{H}}(t_1, \ldots, t_k) = f(t_1, \ldots, t_k)$.

Let ${\mathcal H}$ be a Herbrand structure, and t be a ground term.

Then, $\mathcal{H}[\![t]\!] = t$.

Let \mathcal{H} be a Herbrand structure, F be a formula, and t be a ground term.

Then $\mathcal{H} \models F[t/x]$ if and only if $\mathcal{H}_{[x \mapsto t]} \models F$.

Let $F := \forall x_1 \dots \forall x_n F^*$ be a closed formula in Skolem form.

Then F is satisfiable iff it has a Herbrand model.

Proof:

Is the following formula satisfiable?

$$\mathsf{F} := \exists x_1 \exists x_2 \exists x_3 \ (\neg(\neg \mathsf{P}(x_1) \to \mathsf{P}(x_2)) \land \neg(\neg \mathsf{P}(x_1) \to \neg \mathsf{P}(x_3)))$$

• $\exists x_1 \exists x_2 \dots \exists x_n F^*$, where the matrix F^* does not contain any function symbol

- $\exists x_1 \exists x_2 \dots \exists x_n F^*$, where the matrix F^* does not contain any function symbol
- does not work for $\forall x_1 \exists x_2 F^*$

- $\exists x_1 \exists x_2 \dots \exists x_n F^*$, where the matrix F^* does not contain any function symbol
- does not work for $\forall x_1 \exists x_2 F^*$
- the presence of a function symbols in its Skolem form makes each Herbrand structure infinite

Thank you!