COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 19 \& 20 (Normal forms, Herbrand's Theorem)

Kumar Madhukar
madhukar@cse.iitd.ac.in
October 16th and 19th, 2023

Prenex Normal Form

A predicate logic formula is in prenex normal form if it written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix.
$Q_{1} y_{1} Q_{2} y_{2} \ldots Q_{n} y_{n} F$
where $Q_{i} \in\{\forall, \exists\}, n \geq 0$, and F contains no quantifiers.

Every formula is equivalent to a formula in prenex normal form.

Example

$\neg(\exists x P(x, y) \vee \forall z Q(z)) \wedge \exists w Q(w)$

Translation Lemma

If t is a term and F is a formula such that no variable in t occurs bound in F, then $\mathcal{A} \vDash F[t / x] \quad$ iff $\quad \mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

Renaming bound variables

Let F denote the formula $Q \times G$ where Q is a quantifier. Let y be a variable that does not occur in G.

Then $F \equiv Q y(G[y / x])$.

Rectified formulas

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the formula refer to different variables.

You can rectify a formula by renaming bound variables.
Example: $\forall x \exists y P(x, f(y)) \wedge \forall y(Q(x, y) \vee R(x))$
Every formula is equivalent to a rectified formula in prenex form.

Skolem Form

We say that a rectified prenex formula is in Skolem form if it does not contain any occurrence of the existential quantifier.

A rectified prenex formula can be transformed to an equisatisfiable formula in Skolem form by using extra function symbols.
$\forall x \exists y P(x, y)$ and $\forall x P(x, f(x))$ are equisatisfiable.

Skolem Form

Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} \exists z G$ be a rectified formula. Given a function symbol f of arity n that does not appear in F, write

$$
F^{\prime}=\forall y_{1} \forall y_{2} \ldots \forall y_{n} G\left[f\left(y_{1}, y_{2}, \ldots, y_{n}\right) / z\right] .
$$

Then F and F^{\prime} are equisatisfiable.

Example

$\forall x \exists y \forall z \exists w(\neg P(a, w) \vee Q(f(x), y))$

Proof: Renaming bound variables

Let F denote the formula $Q \times G$ where Q is a quantifier. Let y be a variable that does not occur in G.

Then $F \equiv Q y(G[y / x])$.

Proof:

Proof: Skolem Form

Let $F=\forall y_{1} \forall y_{2} \ldots \forall y_{n} \exists z G$ be a rectified formula. Given a function symbol f of arity n that does not appear in F, write
$F^{\prime}=\forall y_{1} \forall y_{2} \ldots \forall y_{n} G\left[f\left(y_{1}, y_{2}, \ldots, y_{n}\right) / z\right]$.
Then F and F^{\prime} are equisatisfiable.

Proof:

Proof: Translation Lemma

If t is a term and F is a formula such that no variable in t occurs bound in F , then $\mathcal{A} \vDash F[t / x] \quad$ iff $\quad \mathcal{A}_{[x \mapsto \mathcal{A}(t)]} \models F$.

Proof: reading exercise

Herbrand structure

universe is the set of ground terms
terms and function symbols being interpreted "as themselves"
built from syntax

Herbrand structure

Definition 1. Let σ be a signature with at least one constant symbol. A σ-structure \mathcal{H} is called a Herbrand structure if the following hold:

1. The universe $U_{\mathcal{H}}$ is the set of ground terms over σ.
2. For every constant symbol c in σ we have $c_{\mathcal{H}}=c$.
3. For every k-ary function symbol f in σ and for all ground terms $t_{1}, t_{2} \ldots, t_{n} \in U_{\mathcal{H}}$ we have $f_{\mathcal{H}}\left(t_{1}, \ldots, t_{k}\right)=f\left(t_{1}, \ldots, t_{k}\right)$.

Interpretation of a ground term

Let \mathcal{H} be a Herbrand structure, and t be a ground term.
Then, $\mathcal{H} \llbracket t \rrbracket=t$.

Translation Lemma for Herbrand structures

Let \mathcal{H} be a Herbrand structure, F be a formula, and t be a ground term.
Then $\mathcal{H} \vDash F[t / x] \quad$ if and only if $\quad \mathcal{H}_{[x \mapsto t]} \models F$.

Herbrand's Theorem and Proof

Let $F:=\forall x_{1} \ldots \forall x_{n} F^{*}$ be a closed formula in Skolem form.

Then F is satisfiable iff it has a Herbrand model.
Proof:

Example

Is the following formula satisfiable?

$$
F:=\exists x_{1} \exists x_{2} \exists x_{3}\left(\neg\left(\neg P\left(x_{1}\right) \rightarrow P\left(x_{2}\right)\right) \wedge \neg\left(\neg P\left(x_{1}\right) \rightarrow \neg P\left(x_{3}\right)\right)\right)
$$

Finite model

- $\exists x_{1} \exists x_{2} \ldots \exists x_{n} F^{*}$, where the matrix F^{*} does not contain any function symbol

Finite model

- $\exists x_{1} \exists x_{2} \ldots \exists x_{n} F^{*}$, where the matrix F^{*} does not contain any function symbol
- does not work for $\forall x_{1} \exists x_{2} F^{*}$

Finite model

- $\exists x_{1} \exists x_{2} \ldots \exists x_{n} F^{*}$, where the matrix F^{*} does not contain any function symbol
- does not work for $\forall x_{1} \exists x_{2} F^{*}$
- the presence of a function symbols in its Skolem form makes each Herbrand structure infinite

Thank you!

