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Prenex Normal Form

A predicate logic formula is in prenex normal form if it written as a string of quantifiers and
bound variables, called the prefix, followed by a quantifier-free part, called the matrix.

Q1y1Q2y2 . . .Qnyn F

where Qi ∈ {∀,∃}, n ≥ 0, and F contains no quantifiers.

Every formula is equivalent to a formula in prenex normal form.
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Example

¬(∃x P(x , y) ∨ ∀z Q(z)) ∧ ∃w Q(w)
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Translation Lemma

If t is a term and F is a formula such that no variable in t occurs bound in F,

then A |= F [t/x ] iff A[x 7→A(t)] |= F .
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Renaming bound variables

Let F denote the formula Qx G where Q is a quantifier. Let y be a variable that does not
occur in G .

Then F ≡ Qy (G [y/x ]).
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Rectified formulas

A formula is rectified if no variable occurs both bound and free and if all quantifiers in the
formula refer to different variables.

You can rectify a formula by renaming bound variables.

Example: ∀x ∃y P(x , f (y)) ∧ ∀y (Q(x , y) ∨ R(x))

Every formula is equivalent to a rectified formula in prenex form.
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Skolem Form

We say that a rectified prenex formula is in Skolem form if it does not contain any occurrence
of the existential quantifier.

A rectified prenex formula can be transformed to an equisatisfiable formula in Skolem form by
using extra function symbols.

∀x ∃y P(x , y) and ∀x P(x , f (x)) are equisatisfiable.
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Skolem Form

Let F = ∀y1 ∀y2 . . . ∀yn ∃z G be a rectified formula. Given a function symbol f of arity n
that does not appear in F , write

F ′ = ∀y1 ∀y2 . . . ∀yn G [f (y1, y2, . . . , yn)/z ].

Then F and F ′ are equisatisfiable.
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Example

∀x ∃y ∀z ∃w (¬P(a,w) ∨ Q(f (x), y))
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Proof: Renaming bound variables

Let F denote the formula Qx G where Q is a quantifier. Let y be a variable that does not
occur in G .

Then F ≡ Qy (G [y/x ]).

Proof:
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Proof: Translation Lemma

If t is a term and F is a formula such that no variable in t occurs bound in F,

then A |= F [t/x ] iff A[x 7→A(t)] |= F .

Proof: reading exercise
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Herbrand structure

universe is the set of ground terms

terms and function symbols being interpreted ”as themselves”

built from syntax
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Herbrand structure
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Interpretation of a ground term

Let H be a Herbrand structure, and t be a ground term.

Then, HJtK = t.
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Translation Lemma for Herbrand structures

Let H be a Herbrand structure, F be a formula, and t be a ground term.

Then H |= F [t/x ] if and only if H[x 7→t] |= F .
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Herbrand’s Theorem and Proof

Let F := ∀x1 . . . ∀xn F ∗ be a closed formula in Skolem form.

Then F is satisfiable iff it has a Herbrand model.

Proof:
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Example

Is the following formula satisfiable?

F := ∃x1∃x2∃x3 (¬(¬P(x1) → P(x2)) ∧ ¬(¬P(x1) → ¬P(x3)))
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Finite model

• ∃x1∃x2 . . . ∃xn F ∗, where the matrix F ∗ does not contain any function symbol

• does not work for ∀x1∃x2 F ∗

• the presence of a function symbols in its Skolem form makes each Herbrand structure
infinite
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Thank you!
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