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a substitution is a function 6 from the set of o-terms to itself such that ¢ = c¢ for each
constant symbol ¢, and f(t1,...,tx)0 = f(t10,..., t,0) for each k-ary function symbol f

composition of substitutions is written diagrammatically (6.0" denotes the substitution
obtained by applying 6 first, and then ")

given a set of literals D = {Ly,...,Lx} and a substitution 6, define DO = {L10,..., L0}

we say that 6 unifies D if D = {L} for some literal L
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Most General Unifier

0 = [f(a)/x][a/y] unifies {P(x), P(f(y))}

0" = [f(y)/x] also unifies {P(x), P(f(y))}
e (¢ is a more general unifier than 6 (because § = 60'.[a/y])

® () is a most general unifier of a set of literals D if 8 is a unifier of D, and for any other
unifier &, we have that 6/ = 6.9”

® most general unifiers are only unique up to renaming variables (why?)
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Unification theorem

® 3 set of literals either has no unifier or it has a most general unifier

e [P(f(x)),P(g(x))} cannot be unified

{P(f(x)), P(x)} cannot be unified

® we cannot unify a variable x and a term t is x occurs in t

a unifiable set of literals has a most general unifier

® proof:
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Robinson’s algorithm

Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of [) or “fail”
! := identity substitution
while # is not a unifier of IJ do
begin
pick two distinct literals in ¢ and find the lett-most positions at which they differ

if one of the corresponding sub-terms is a variable & and the other a term ¢ not containing x
then 0 := 0 - [t/z] else output “fail” and halt
end
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Termination

® 3 variable x is replaced in each iteration with a term t that does not contain x

® the number of different variables occuring in Df decreases by one in each iteration
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Correctness

for any unifier 6/ of D, we have ¢/ = 6.6’

® argue that this is a loop invariant

holds initially (€ is identity)

why does the inductive step work?
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Resolution

Definition 3 (Resolution). Let C| and C5 be clauses with no vartable in common. We say that a
clause R is a resolvent of C| and (9 if there are sets of literals Dy C 1 and Dy C 9 such that
D1 U D2 has a most general unifier #, and

R=(C10\{L}) U (C20\{L}), (1)
where L = D1f and L = Dsfl. More generally, if € and (' are arbitrary clauses, we say that R is

a resolvent of €'t and b if there are variable renamings #1 and f such that C1f; and Cafs have
no variable in common, and R is a resolvent of C; and Cafly according to the definition above.
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{P(f(x),&(y)), Q(x,y)} {=P(f(f(a)), &(2)), Q(f(a), 2)}
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{P(f(x),&(y)), Q(x,y)} {=P(f(f(a)), &(2)), Q(f(a), 2)}

check if there are common variables
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{P(f(x).&(y)), Q(x, )} {-P(f(f(a)), 8(2)), Q(f(a), 2)}
check if there are common variables

pick D; and D,, and get a most general unifier § of D; U D,
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{P(f(x).&(y)), Q(x, )} {-P(f(f(a)), 8(2)), Q(f(a), 2)}
check if there are common variables

pick D; and D,, and get a most general unifier § of D; U D,

resolve, to get {Q(f(a), z)}
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Another example

{P(x), P(y)} {=P(x),~P(y)}
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Resolution procedure

Input: a set of clauses, S

Output: If the algorithm terminates, report that S is sat or unsat

So:=S

Choose clashing clauses C1, G, € Sj, and let C = Res(Cy, ().
If C is [, terminate and report unsat

Sizi=SuUcC

If Si11 = S; for all possible pairs of clashing clauses, terminate and report sat
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Resolution procedure

Input: a set of clauses, S

Output: If the algorithm terminates, report that S is sat or unsat

So:=S

Choose clashing clauses C1, G, € Sj, and let C = Res(Cy, ().

If C is [, terminate and report unsat

5,'+1 =5uUcC

If Si11 = S; for all possible pairs of clashing clauses, terminate and report sat

this may not terminate for a satisfiable set of clauses (because of existence of infinite models);
so this is not a decision procedure

15/38



L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(v)} given
6. {-~P'(x),~Q(x)} given
7. {=P'(x), ~R'(x)} given
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L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(y)} given
6. {=P'(x),~Q(x)} given
7. 2P (0. R ()} given
8. {=Q(a)} [a/x] 3,6

17/38



L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(y)} given
6. {-~P'(x),~Q(x)} given
7. {=P'(x), ~R'(x)} given
8. {-Q(a)} [a/x] 3,6
9. {Q(a), R'(f(a))} [a/x] 2,4
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L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(y)} given
6. {=P'(x),~Q(x)} given
7. 2P (0. R ()} given
8. {=Q(a)} [a/x] 3,6
9. {Q(a), R'(f(a))} [a/x] 2,4
10. {R'(f(a))} 8,9
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L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(y)} given
6. {-~P'(x),~Q(x)} given
7. {=P'(x), ~R'(x)} given
8. {-Q(a)} [a/x] 3,6
9. {Q(a), R'(f(a))} [a/x] 2,4
10. {R'(f(a))} 8,9
11. {Q(a), R(a, f(a))} [a/x] 1,4
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L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(y)} given
6. {=P'(x),~Q(x)} given
7. 2P (0. R ()} given
8. {=Q(a)} [a/x] 3,6
9. {Q(a), R'(f(a))} [a/x] 2,4
10. {R'(f(a))} 8,9
11. {Q(a), R(a, f(a))} [a/x] 1,4
12. {R(a,f(a))} 8,11
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L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(y)} given
6. {=P'(x),~Q(x)} given
7. 2P (0. R ()} given
8. {=Q(a)} [a/x] 3,6
9. {Q(a), R'(f(a))} [a/x] 2,4
10. {R'(f(a))} 8,9
11. {Q(a), R(a, f(a))} [a/x] 1,4
12. {R(a,f(a))} 8,11
13. {P'(f(a))} [f(a)/y] 5,12
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L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(v)} given
6. {=P'(x),~Q(x)} given
7. P (), R () given
8. {-Q(a)} [a/x] 3,6
9. {Q(a), R'(f(a))} [a/x] 2,4
10. {R'(f(a))} 8,9
11. {Q(a), R(a, f(a))} [a/x] 1,4
12. {R(a,f(a))} 8,11
13. {P'(f(a))} [f(a)/y] 5,12
14. {=R'(f(a))} [f(a)/x] 7,13
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L {=P(x), Q(x), R(x, f(x))} given
2. {=P(x), Q(x), R'(f(x))} given
3. {P'(a)} given
4. {P(a)} given
5. {=R(a,y), P'(y)} given
6. {=P'(x),~Q(x)} given
7. 2P (0. R ()} given
8. {=Q(a)} [a/x] 3,6
9. {Q(a), R'(f(a))} [a/x] 2,4
10. {R'(f(a))} 8,9
11. {Q(a), R(a, f(a))} [a/x] 1,4
12. {R(a,f(a))} 8,11
13. {P'(f(a))} [f(a)/y] 5,12
14. {=R'(f(a))} [f(a)/x] 7,13
15. {} 10,14
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Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a
constant symbol e, and a unary function symbol s.

Fi:Vx A(e, x, x)
Fo : VxVyVz (=A(x,y,z) V A(s(x), v, s(2)))
F3 : Vx3dy A(s(s(e)),x,y)

Use first-order resolution to show that F; A Fp E Fj.
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Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a
constant symbol e, and a unary function symbol s.

Fi:Vx A(e, x, x)
Fo : VxVyVz (=A(x,y,z) V A(s(x), v, s(2)))
F3 : Vx3dy A(s(s(e)),x,y)

Use first-order resolution to show that F; A Fp E Fj.

In other words, show that F; A Fo A =F3 is unsatisfiable.
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Resolution Lemma

® Given a formula H with free variables xi, ..., x,, its universal closure V* H is the sentence
Vxi,...,Vx, H.
® let F =Vxy,...,Vx, G be a closed formula in Skolem form, with G quantifier-free. Let

R be a resolvent of two clauses in G. Then F =V* (G U{R}).

® Soundness follows immediately from this.

28/38



Lifting Lemma

Let C; and G, be clauses with respective ground instances G; and Gp. Suppose that R is a
propositional resolvent of G; and G,. Then C; and G, have a predicate-logic resolvent R’ such
that R is a ground instance of R'.

Proof:

Reference material: https://www.cs.ox.ac.uk/people/james.worrell/lecture14-2015.pdf
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https://www.cs.ox.ac.uk/people/james.worrell/lecture14-2015.pdf

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.

Proof:
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.

Proof:

® by completeness of ground resolution, there is a proof Cj, C}, ..., C} =0
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.

Proof:

® by completeness of ground resolution, there is a proof Cj, C}, ..., C} =0

® (] is either a ground instance of a clause in F’ or is a resolvent of C; and C for j, k <'i
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.
Proof:

® by completeness of ground resolution, there is a proof Cj, C}, ..., C} =0
® (] is either a ground instance of a clause in F’ or is a resolvent of C; and C for j, k <'i

® we inductively define a corresponding predicate-logic proof Ci, C},. .., C, = O such that
C/ is a ground instance of C;
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.

Proof:
® by completeness of ground resolution, there is a proof Cj, C}, ..., C} =0
® (] is either a ground instance of a clause in F’ or is a resolvent of C; and C for j, k <'i
® we inductively define a corresponding predicate-logic proof Ci, C},. .., C, = O such that

C/ is a ground instance of C;
e if C/ is a ground instance of C € F/, ;= C
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.

Proof:
® by completeness of ground resolution, there is a proof Cj, C}, ..., C} =0
® (] is either a ground instance of a clause in F’ or is a resolvent of C; and C; for j, k <'i

® we inductively define a corresponding predicate-logic proof Ci, C},. .., C, = O such that
C/ is a ground instance of C;

e if C/ is a ground instance of C € F/, ;= C

® otherwise, (] is a resolvent of C; and C for j, k <
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.

Proof:
® by completeness of ground resolution, there is a proof Cj, C}, ..., C} =0
® (] is either a ground instance of a clause in F’ or is a resolvent of C; and C; for j, k <'i

® we inductively define a corresponding predicate-logic proof Ci, C},. .., C, = O such that
C/ is a ground instance of C;

e if C/ is a ground instance of C € F/, ;= C
® otherwise, (] is a resolvent of C; and C for j, k <

® by induction, we have constructed C; and Cj ...
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F’ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of [J from F’.

Proof:
® by completeness of ground resolution, there is a proof Cj, C}, ..., C} =0
® (] is either a ground instance of a clause in F’ or is a resolvent of C; and C; for j, k <'i

® we inductively define a corresponding predicate-logic proof Ci, C},. .., C, = O such that
C/ is a ground instance of C;

e if C/ is a ground instance of C € F/, ;= C
® otherwise, (] is a resolvent of C; and C for j, k <
® by induction, we have constructed C; and Cj ...

® by the lifting lemma ...
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Thank you!
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