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Unification

• a substitution is a function θ from the set of σ-terms to itself such that cθ = c for each
constant symbol c , and f (t1, . . . , tk)θ = f (t1θ, . . . , tkθ) for each k-ary function symbol f

• composition of substitutions is written diagrammatically (θ.θ′ denotes the substitution
obtained by applying θ first, and then θ′)

• given a set of literals D = {L1, . . . , Lk} and a substitution θ, define Dθ = {L1θ, . . . , Lkθ}

• we say that θ unifies D if Dθ = {L} for some literal L
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Most General Unifier

• θ = [f (a)/x ][a/y ] unifies {P(x),P(f (y))}

• θ′ = [f (y)/x ] also unifies {P(x),P(f (y))}

• θ′ is a more general unifier than θ (because θ = θ′.[a/y ])

• θ is a most general unifier of a set of literals D if θ is a unifier of D, and for any other
unifier θ′, we have that θ′ = θ.θ′′

• most general unifiers are only unique up to renaming variables (why?)
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Unification theorem

• a set of literals either has no unifier or it has a most general unifier

• {P(f (x)),P(g(x))} cannot be unified

• {P(f (x)),P(x)} cannot be unified

• we cannot unify a variable x and a term t is x occurs in t

• a unifiable set of literals has a most general unifier

• proof:
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Robinson’s algorithm
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Termination

• a variable x is replaced in each iteration with a term t that does not contain x

• the number of different variables occuring in Dθ decreases by one in each iteration
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Correctness

• for any unifier θ′ of D, we have θ′ = θ.θ′

• argue that this is a loop invariant

• holds initially (θ is identity)

• why does the inductive step work?
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Resolution
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Example

{P(f (x), g(y)),Q(x , y)} {¬P(f (f (a)), g(z)),Q(f (a), z)}

check if there are common variables

pick D1 and D2, and get a most general unifier θ of D1 ∪ D2

resolve, to get {Q(f (a), z)}
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Another example

{P(x),P(y)} {¬P(x),¬P(y)}
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Resolution procedure

Input: a set of clauses, S

Output: If the algorithm terminates, report that S is sat or unsat

S0 := S

Choose clashing clauses C1,C2 ∈ Si , and let C = Res(C1,C2).

If C is □, terminate and report unsat

Si+1 = Si ∪ C

If Si+1 = Si for all possible pairs of clashing clauses, terminate and report sat

this may not terminate for a satisfiable set of clauses (because of existence of infinite models);
so this is not a decision procedure
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Example

1. {¬P(x),Q(x),R(x , f (x))} given

2. {¬P(x),Q(x),R′(f (x))} given

3. {P′(a)} given

4. {P(a)} given

5. {¬R(a, y),P′(y)} given

6. {¬P′(x),¬Q(x)} given

7. {¬P′(x),¬R′(x)} given

8. {¬Q(a)} [a/x] 3,6

9. {Q(a),R′(f (a))} [a/x] 2,4

10. {R′(f (a))} 8,9

11. {Q(a),R(a, f (a))} [a/x] 1,4

12. {R(a, f (a))} 8,11

13. {P′(f (a))} [f(a)/y] 5,12

14. {¬R′(f (a))} [f(a)/x] 7,13

15. {} 10,14
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Another example

1. {¬P(x , y),P(y , x)} given

2. {¬P(x , y),¬P(y , z),P(x , z)} given

3. {P(x , f (x))} given

4. {¬P(x , x)} given
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Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a
constant symbol e, and a unary function symbol s.

F1 : ∀x A(e, x , x)

F2 : ∀x∀y∀z (¬A(x , y , z) ∨ A(s(x), y , s(z)))

F3 : ∀x∃y A(s(s(e)), x , y)

Use first-order resolution to show that F1 ∧ F2 ⊨ F3.

In other words, show that F1 ∧ F2 ∧ ¬F3 is unsatisfiable.
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Resolution Lemma

• Given a formula H with free variables x1, . . . , xn, its universal closure ∀∗ H is the sentence
∀x1, . . . ,∀xn H.

• Let F = ∀x1, . . . ,∀xn G be a closed formula in Skolem form, with G quantifier-free. Let
R be a resolvent of two clauses in G . Then F ≡ ∀∗ (G ∪ {R}).

• Soundness follows immediately from this.
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Lifting Lemma

Let C1 and C2 be clauses with respective ground instances G1 and G2. Suppose that R is a
propositional resolvent of G1 and G2. Then C1 and C2 have a predicate-logic resolvent R ′ such
that R is a ground instance of R ′.

Proof:
Reference material: https://www.cs.ox.ac.uk/people/james.worrell/lecture14-2015.pdf
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Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

30 / 38



Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

31 / 38



Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

32 / 38



Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

33 / 38



Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

34 / 38



Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

35 / 38



Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

36 / 38



Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F ′ in CNF. If F is unsat, then there
is a predicate-logic resolution proof of □ from F ′.

Proof:

• by completeness of ground resolution, there is a proof C ′
1,C

′
2, . . . ,C

′
n = □

• C ′
i is either a ground instance of a clause in F ′ or is a resolvent of C ′

j and C ′
k for j , k < i

• we inductively define a corresponding predicate-logic proof C ′
1,C

′
2, . . . ,Cn = □ such that

C ′
i is a ground instance of Ci

• if C ′
i is a ground instance of C ∈ F ′, Ci = C

• otherwise, C ′
i is a resolvent of C ′

j and C ′
k for j , k < i

• by induction, we have constructed Cj and Ck ...

• by the lifting lemma ...

37 / 38



Thank you!
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