COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 23 \& 24 (Predicate Resolution)

Kumar Madhukar
madhukar@cse.iitd.ac.in

November 02nd and 06th, 2023

Unification

- a substitution is a function θ from the set of σ-terms to itself such that $c \theta=c$ for each constant symbol c, and $f\left(t_{1}, \ldots, t_{k}\right) \theta=f\left(t_{1} \theta, \ldots, t_{k} \theta\right)$ for each k-ary function symbol f
- composition of substitutions is written diagrammatically ($\theta . \theta^{\prime}$ denotes the substitution obtained by applying θ first, and then θ^{\prime})
- given a set of literals $D=\left\{L_{1}, \ldots, L_{k}\right\}$ and a substitution θ, define $D \theta=\left\{L_{1} \theta, \ldots, L_{k} \theta\right\}$
- we say that θ unifies D if $D \theta=\{L\}$ for some literal L

Most General Unifier

- $\theta=[f(a) / x][a / y]$ unifies $\{P(x), P(f(y))\}$
- $\theta^{\prime}=[f(y) / x]$ also unifies $\{P(x), P(f(y))\}$
- θ^{\prime} is a more general unifier than θ (because $\theta=\theta^{\prime} .[a / y]$)
- θ is a most general unifier of a set of literals D if θ is a unifier of D, and for any other unifier θ^{\prime}, we have that $\theta^{\prime}=\theta \cdot \theta^{\prime \prime}$
- most general unifiers are only unique up to renaming variables (why?)

Unification theorem

- a set of literals either has no unifier or it has a most general unifier
- $\{P(f(x)), P(g(x))\}$ cannot be unified
- $\{P(f(x)), P(x)\}$ cannot be unified
- we cannot unify a variable x and a term t is x occurs in t
- a unifiable set of literals has a most general unifier
- proof:

Robinson's algorithm

Unification Algorithm

Input: Set of literals D
Output: Either a most general unifier of D or "fail"
$\theta:=$ identity substitution
while θ is not a unifier of D do
begin
pick two distinct literals in $D \theta$ and find the left-most positions at which they differ
if one of the corresponding sub-terms is a variable x and the other a term t not containing x then $\theta:=\theta \cdot[t / x]$ else output "fail" and halt
end

Termination

- a variable x is replaced in each iteration with a term t that does not contain x
- the number of different variables occuring in $D \theta$ decreases by one in each iteration

Correctness

- for any unifier θ^{\prime} of D, we have $\theta^{\prime}=\theta \cdot \theta^{\prime}$
- argue that this is a loop invariant
- holds initially (θ is identity)
- why does the inductive step work?

Resolution

Definition 3 (Resolution). Let C_{1} and C_{2} be clauses with no variable in common. We say that a clause R is a resolvent of C_{1} and C_{2} if there are sets of literals $D_{1} \subseteq C_{1}$ and $D_{2} \subseteq C_{2}$ such that $D_{1} \cup \overline{D_{2}}$ has a most general unifier θ, and

$$
\begin{equation*}
R=\left(C_{1} \theta \backslash\{L\}\right) \cup\left(C_{2} \theta \backslash\{\bar{L}\}\right), \tag{1}
\end{equation*}
$$

where $L=D_{1} \theta$ and $\bar{L}=D_{2} \theta$. More generally, if C_{1} and C_{2} are arbitrary clauses, we say that R is a resolvent of C_{1} and C_{2} if there are variable renamings θ_{1} and θ_{2} such that $C_{1} \theta_{1}$ and $C_{2} \theta_{2}$ have no variable in common, and R is a resolvent of $C_{1} \theta_{1}$ and $C_{2} \theta_{2}$ according to the definition above.

Example

$\{P(f(x), g(y)), Q(x, y)\}$ $\{\neg P(f(f(a)), g(z)), Q(f(a), z)\}$

Example

$\{P(f(x), g(y)), Q(x, y)\}$

$$
\{\neg P(f(f(a)), g(z)), Q(f(a), z)\}
$$

check if there are common variables

Example

$\{P(f(x), g(y)), Q(x, y)\}$

$$
\{\neg P(f(f(a)), g(z)), Q(f(a), z)\}
$$

check if there are common variables
pick D_{1} and D_{2}, and get a most general unifier θ of $D_{1} \cup \overline{D_{2}}$

Example

$\{P(f(x), g(y)), Q(x, y)\}$

$$
\{\neg P(f(f(a)), g(z)), Q(f(a), z)\}
$$

check if there are common variables
pick D_{1} and D_{2}, and get a most general unifier θ of $D_{1} \cup \overline{D_{2}}$
resolve, to get $\{Q(f(a), z)\}$

Another example

$$
\{P(x), P(y)\}
$$

$$
\{\neg P(x), \neg P(y)\}
$$

Resolution procedure

Input: a set of clauses, S
Output: If the algorithm terminates, report that S is sat or unsat
$S_{0}:=S$
Choose clashing clauses $C_{1}, C_{2} \in S_{i}$, and let $C=\operatorname{Res}\left(C_{1}, C_{2}\right)$.
If C is \square, terminate and report unsat
$S_{i+1}=S_{i} \cup C$
If $S_{i+1}=S_{i}$ for all possible pairs of clashing clauses, terminate and report sat

Resolution procedure

Input: a set of clauses, S
Output: If the algorithm terminates, report that S is sat or unsat
$S_{0}:=S$
Choose clashing clauses $C_{1}, C_{2} \in S_{i}$, and let $C=\operatorname{Res}\left(C_{1}, C_{2}\right)$.
If C is \square, terminate and report unsat
$S_{i+1}=S_{i} \cup C$
If $S_{i+1}=S_{i}$ for all possible pairs of clashing clauses, terminate and report sat
this may not terminate for a satisfiable set of clauses (because of existence of infinite models); so this is not a decision procedure

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\} \quad$ given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
given
given
given
given
given
given

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\}$ given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
given
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
given
given
given
given
given
[a/x] 3,6

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
9. $\left\{Q(a), R^{\prime}(f(a))\right\}$
given
given
given
given
given
given
given
[a/x] 3,6
[a/x] 2,4

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\} \quad$ given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$ given
3. $\left\{P^{\prime}(a)\right\}$
given
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
9. $\left\{Q(a), R^{\prime}(f(a))\right\}$
10. $\left\{R^{\prime}(f(a))\right\}$

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
9. $\left\{Q(a), R^{\prime}(f(a))\right\}$
10. $\left\{R^{\prime}(f(a))\right\}$
11. $\{Q(a), R(a, f(a))\}$
given
given
given
given
given
given
[a/x] 3,6
[a/x] 2,4
8,9
[a/x] 1,4

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
given
4. $\{P(a)\}$
given
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
9. $\left\{Q(a), R^{\prime}(f(a))\right\}$
10. $\left\{R^{\prime}(f(a))\right\}$
11. $\{Q(a), R(a, f(a))\}$
12. $\{R(a, f(a))\}$

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
9. $\left\{Q(a), R^{\prime}(f(a))\right\}$
10. $\left\{R^{\prime}(f(a))\right\}$
11. $\{Q(a), R(a, f(a))\}$
12. $\{R(a, f(a))\}$
[a/x] 3,6
[a/x] 2,4
8,9
[a/x] 1,4
13. $\left\{P^{\prime}(f(a))\right\}$

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
9. $\left\{Q(a), R^{\prime}(f(a))\right\}$
10. $\left\{R^{\prime}(f(a))\right\}$
11. $\{Q(a), R(a, f(a))\}$
12. $\{R(a, f(a))\}$
13. $\left\{P^{\prime}(f(a))\right\}$
14. $\left\{\neg R^{\prime}(f(a))\right\}$
given
given
given
given
given
given
[a/x] 3,6
[a/x] 2,4
8,9
[a/x] 1,4
8,11
$[\mathrm{f}(\mathrm{a}) / \mathrm{y}] 5,12$
$[\mathrm{f}(\mathrm{a}) / \mathrm{x}] 7,13$

Example

1. $\{\neg P(x), Q(x), R(x, f(x))\}$
given
2. $\left\{\neg P(x), Q(x), R^{\prime}(f(x))\right\}$
3. $\left\{P^{\prime}(a)\right\}$
4. $\{P(a)\}$
5. $\left\{\neg R(a, y), P^{\prime}(y)\right\}$
6. $\left\{\neg P^{\prime}(x), \neg Q(x)\right\}$
7. $\left\{\neg P^{\prime}(x), \neg R^{\prime}(x)\right\}$
8. $\{\neg Q(a)\}$
9. $\left\{Q(a), R^{\prime}(f(a))\right\}$
10. $\left\{R^{\prime}(f(a))\right\}$
11. $\{Q(a), R(a, f(a))\}$
12. $\{R(a, f(a))\}$
13. $\left\{P^{\prime}(f(a))\right\}$
14. $\left\{\neg R^{\prime}(f(a))\right\}$
15. $\}$
[a/x] 3,6
[a/x] 2,4
8,9
[a/x] 1,4
8,11
[f(a)/y] 5,12
$[f(a) / x] 7,13$
10,14

Another example

1. $\{\neg P(x, y), P(y, x)\}$	given
2. $\{\neg P(x, y), \neg P(y, z), P(x, z)\}$	given
3. $\{P(x, f(x))\}$	given
4. $\{\neg P(x, x)\}$	given

Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a constant symbol e, and a unary function symbol s.
$F_{1}: \forall x A(e, x, x)$
$F_{2}: \forall x \forall y \forall z(\neg A(x, y, z) \vee A(s(x), y, s(z)))$
$F_{3}: \forall x \exists y A(s(s(e)), x, y)$
Use first-order resolution to show that $F_{1} \wedge F_{2} \vDash F_{3}$.

Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a constant symbol e, and a unary function symbol s.
$F_{1}: \forall x A(e, x, x)$
$F_{2}: \forall x \forall y \forall z(\neg A(x, y, z) \vee A(s(x), y, s(z)))$
$F_{3}: \forall x \exists y A(s(s(e)), x, y)$
Use first-order resolution to show that $F_{1} \wedge F_{2} \vDash F_{3}$.
In other words, show that $F_{1} \wedge F_{2} \wedge \neg F_{3}$ is unsatisfiable.

Resolution Lemma

- Given a formula H with free variables x_{1}, \ldots, x_{n}, its universal closure $\forall^{*} H$ is the sentence $\forall x_{1}, \ldots, \forall x_{n} H$.
- Let $F=\forall x_{1}, \ldots, \forall x_{n} G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall^{*}(G \cup\{R\})$.
- Soundness follows immediately from this.

Lifting Lemma

Let C_{1} and C_{2} be clauses with respective ground instances G_{1} and G_{2}. Suppose that R is a propositional resolvent of G_{1} and G_{2}. Then C_{1} and C_{2} have a predicate-logic resolvent R^{\prime} such that R is a ground instance of R^{\prime}.

Proof:
Reference material: https://www.cs.ox.ac.uk/people/james.worrell/lecture14-2015.pdf

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

- by completeness of ground resolution, there is a proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}=\square$

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

- by completeness of ground resolution, there is a proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}=\square$
- C_{i}^{\prime} is either a ground instance of a clause in F^{\prime} or is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

- by completeness of ground resolution, there is a proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}=\square$
- C_{i}^{\prime} is either a ground instance of a clause in F^{\prime} or is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$
- we inductively define a corresponding predicate-logic proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}=\square$ such that C_{i}^{\prime} is a ground instance of C_{i}

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

- by completeness of ground resolution, there is a proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}=\square$
- C_{i}^{\prime} is either a ground instance of a clause in F^{\prime} or is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$
- we inductively define a corresponding predicate-logic proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}=\square$ such that C_{i}^{\prime} is a ground instance of C_{i}
- if C_{i}^{\prime} is a ground instance of $C \in F^{\prime}, C_{i}=C$

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

- by completeness of ground resolution, there is a proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}=\square$
- C_{i}^{\prime} is either a ground instance of a clause in F^{\prime} or is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$
- we inductively define a corresponding predicate-logic proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}=\square$ such that C_{i}^{\prime} is a ground instance of C_{i}
- if C_{i}^{\prime} is a ground instance of $C \in F^{\prime}, C_{i}=C$
- otherwise, C_{i}^{\prime} is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

- by completeness of ground resolution, there is a proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}=\square$
- C_{i}^{\prime} is either a ground instance of a clause in F^{\prime} or is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$
- we inductively define a corresponding predicate-logic proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}=\square$ such that C_{i}^{\prime} is a ground instance of C_{i}
- if C_{i}^{\prime} is a ground instance of $C \in F^{\prime}, C_{i}=C$
- otherwise, C_{i}^{\prime} is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$
- by induction, we have constructed C_{j} and $C_{k} \ldots$

Refutation Completeness

Let F be a closed formula in Skolem form with its matrix F^{\prime} in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F^{\prime}.

Proof:

- by completeness of ground resolution, there is a proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}=\square$
- C_{i}^{\prime} is either a ground instance of a clause in F^{\prime} or is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$
- we inductively define a corresponding predicate-logic proof $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}=\square$ such that C_{i}^{\prime} is a ground instance of C_{i}
- if C_{i}^{\prime} is a ground instance of $C \in F^{\prime}, C_{i}=C$
- otherwise, C_{i}^{\prime} is a resolvent of C_{j}^{\prime} and C_{k}^{\prime} for $j, k<i$
- by induction, we have constructed C_{j} and $C_{k} \ldots$
- by the lifting lemma ...

Thank you!

