COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 3-4 (Syntax, Semantics, Soundness and Completeness)

Kumar Madhukar

madhukar@cse.iitd.ac.in

August 3rd and 7th, 2023

PBC: Classical vs. Intuitionistic Logicians

- Syntax of propositional logic
- Semantics of propositional logic
- Soundness and completeness

- formulas are strings over propositional atoms, logical symbols and left- and right-brackets
- but not everything is allowed, of course; e.g. (¬)() ∨ pq → does not seem to make any sense
- we would like our formulas to be *well-formed*

- propositional atoms are well-formed formulas
- if ϕ is well-formed, so is $(\neg \phi)$
- if ϕ and ψ are well-formed, so are $(\phi \land \psi)$, $(\phi \lor \psi)$, and $(\phi \rightarrow \psi)$
- nothing else is a well-formed formula

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \psi) \mid (\phi \lor \psi) \mid (\phi \to \psi)$$

Parse-trees and subformulas

- based on the truth value of atomic propositions, and how the logical connectives manipulate the truth values
- $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$
- truth tables

Do the following hold?

- $p \land q \vDash p$
- $p \lor q \vDash p$
- $\neg q, p \lor q \vDash p$
- $p \vDash q \lor \neg q$

Induction on the height of the parse tree (structural induction)

Induction on the height of the parse tree (structural induction)

base case: atomic formulas do not have any brackets

Induction on the height of the parse tree (structural induction)

base case: atomic formulas do not have any brackets

inductive step: argue for all possible logical connectives as root

If $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid

then it is inconceivable that there there is a valuation in which ψ is false, whereas $\phi_1, \phi_2, \ldots, \phi_n$ are all true.

induction on the length of the (natural deduction) proof

can be tricky though (because of the assumption boxes)

Soundness If $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid, then $\phi_1, \phi_2, \ldots, \phi_n \models \psi$ holds.

Completeness If $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$ holds, then $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid.

Thank you!