COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 7-8 (Hilbert's Axiomatization, Soundness and Completeness, Compactness)

Kumar Madhukar

madhukar@cse.iitd.ac.in

August 17th and 21st, 2023

Axioms and inference rule

A derivation of α is a finite sequence of formulas $\beta_1, \beta_2, \ldots, \beta_n$ such that:

- $\beta_n = \alpha$
- each β_i is either an instance of one of the axioms, or modus ponens applied to β_j and β_k such that j, k < i.

derivation of $\alpha \rightarrow \alpha$

for all formulas α , $\vdash \alpha$ *iff* $\models \alpha$

Soundness is easy to prove

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO) Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO) Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that $\neg \neg \alpha \rightarrow \alpha$. (TODO)

Then, if α is not derivable, $\neg \neg \alpha$ is also not derivable.

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO) Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that $\neg \neg \alpha \rightarrow \alpha$. (TODO)

Then, if α is not derivable, $\neg \neg \alpha$ is also not derivable.

Let us call α consistent if $\nvdash \neg \alpha$.

So, $\neg \alpha$ is consistent. Suppose we prove that if β is consistent then β is satisfiable. (TODO).

Suppose we prove that $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ (TODO) Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that $\neg \neg \alpha \rightarrow \alpha$. (TODO)

Then, if α is not derivable, $\neg\neg\alpha$ is also not derivable.

Let us call α consistent if $\nvdash \neg \alpha$.

So, $\neg \alpha$ is consistent. Suppose we prove that if β is consistent then β is satisfiable. (TODO). So, $\neg \alpha$ is satisifiable. Therefore, α is not valid (it is not a tautology).

For a set of formulas Γ , and formulas α, β , $\Gamma \cup \{\alpha\} \vdash \beta$ iff $\Gamma \vdash \alpha \rightarrow \beta$.

- $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$
- $\neg \neg \alpha \rightarrow \alpha$
- For all formulas β , if β is consistent then β is satisfiable.

 $\beta \, \, {\rm consistent} \ \ \rightarrow \ \ \beta \, \, {\rm satisfiable}$

- every consistent set can be extended to a maximal consistent set (MCS)
- let X be an MCS; for all formulas α, v_X ⊨ α iff α ∈ X (where v_X is the valuation that every atomic proposition in X to true)

Derivability and Logical Consequence

Let $X \subseteq \Phi$ and $\alpha \in \Phi$. Then $X \vDash \alpha$ iff $X \vdash \alpha$.

Let $X \subseteq \Phi$ and $\alpha \in \Phi$. Then $X \vDash \alpha$ iff there exists $Y \subseteq_{fin} X, Y \vDash \alpha$.

Let $X \subseteq \Phi$. Then, X is satisfiable *iff* every $Y \subseteq_{fin} X$ is satisfiable.

Proof of Compactness Theorem

(left as an exercise)

Thank you!