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Hilbert’s proof system

Axioms and inference rule
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Derivations

A derivation of α is a finite sequence of formulas β1, β2, . . . , βn such that:

• βn = α

• each βi is either an instance of one of the axioms, or modus ponens applied to βj and βk
such that j , k < i .
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Example

derivation of α → α
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Soundness and Completeness

for all formulas α, ⊢ α iff ⊨ α
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Soundness is easy to prove
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Completeness

We need to prove that if α is a tautology, then α is derivable.

Suppose we prove that (¬β → ¬α) → (α → β) (TODO)
Then, it suffices to prove that if α is not derivable, then α is not a tautology.

Suppose we prove that ¬¬α → α. (TODO)

Then, if α is not derivable, ¬¬α is also not derivable.

Let us call α consistent if ⊬ ¬α.

So, ¬α is consistent. Suppose we prove that if β is consistent then β is satisfiable. (TODO).

So, ¬α is satisifiable. Therefore, α is not valid (it is not a tautology).
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Deduction Theorem

For a set of formulas Γ, and formulas α, β, Γ ∪ {α} ⊢ β iff Γ ⊢ α → β.
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Our TODO list

• (¬β → ¬α) → (α → β)

• ¬¬α → α

• For all formulas β, if β is consistent then β is satisfiable.
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Completeness Proof

β consistent → β satisfiable

• every consistent set can be extended to a maximal consistent set (MCS)

• let X be an MCS; for all formulas α, vX ⊨ α iff α ∈ X
(where vX is the valuation that every atomic proposition in X to true)
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Derivability and Logical Consequence
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Strong Completeness

Let X ⊆ Φ and α ∈ Φ. Then X ⊨ α iff X ⊢ α.
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Compactness Theorem

Let X ⊆ Φ and α ∈ Φ. Then X ⊨ α iff there exists Y ⊆fin X ,Y ⊨ α.
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Finite Satisfiability

Let X ⊆ Φ. Then, X is satisfiable iff every Y ⊆fin X is satisfiable.
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Proof of Compactness Theorem
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Proof of Strong Completeness

(left as an exercise)
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Thank you!
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