
COL703: Logic for Computer Science

(Jul-Nov 2023)

Lectures 9 & 10 (Horn-SAT, 2-SAT, DPLL)

Kumar Madhukar

madhukar@cse.iitd.ac.in

August 28th and 31st, 2023

1 / 33



Horn formulas

• a literal is a boolean variable or its negation

• for a variable x , we have a positive literal (x) and a negative literal (¬x)

• a horn clause is a finite disjunction of literals with at most one positive literal

• a horn formula is a finite conjunction of horn clauses

• example
(x∨¬y ∨¬z∨¬w)∧(¬x∨¬y ∨¬w)∧(¬x∨¬z∨w)∧(¬x∨y)∧(x)∧(¬z)∧(¬x∨¬y ∨w)

2 / 33



Horn-SAT

• if the formula contains a unit clause, say (l )

• all clauses containing (l ) is removed

• from all clauses containing (¬l ) have (¬l ) removed

• this may generate new unit clauses, which are propagated similarly

• if there are no unit clauses left, the formula can be satisfied by setting every remaining
variable to false

• formula is unsat if propagation generates an empty clause

3 / 33



2-SAT

• given a 2-CNF formula, is it satisfiable or not

• every clause has 2 literals

• example
(¬x ∨ y) ∧ (¬y ∨ z) ∧ (x ∨ ¬z) ∧ (z ∨ y)

4 / 33



2-SAT satisfiability check

• create a graph with 2n vertices (for a formula with n variables)

• corresponding to positive and negative literals for every variable

• for every clause (a ∨ b), create directed edges ¬a → b and ¬b → a

• claim: if the graph contains a path from α to β, then it also contains a path from ¬β to
¬α

• claim: a 2-CNF formula is unsat iff there exists a variable x such that:
• there is a path from x to ¬x
• there is a path from ¬x to x

5 / 33



2-SAT satisfiability check

• create a graph with 2n vertices (for a formula with n variables)

• corresponding to positive and negative literals for every variable

• for every clause (a ∨ b), create directed edges ¬a → b and ¬b → a

• claim: if the graph contains a path from α to β, then it also contains a path from ¬β to
¬α

• claim: a 2-CNF formula is unsat iff there exists a variable x such that:
• there is a path from x to ¬x
• there is a path from ¬x to x

6 / 33



2-SAT satisfiability check

• create a graph with 2n vertices (for a formula with n variables)

• corresponding to positive and negative literals for every variable

• for every clause (a ∨ b), create directed edges ¬a → b and ¬b → a

• claim: if the graph contains a path from α to β, then it also contains a path from ¬β to
¬α

• claim: a 2-CNF formula is unsat iff there exists a variable x such that:
• there is a path from x to ¬x
• there is a path from ¬x to x

7 / 33



2-SAT satisfying assignment

• pick an unassigned literal l , with no path from l to ¬l

• assign true to l and all vertices reachable from l (and assign false to their negations)

• repeat until all vertices are assigned

8 / 33



Example

(¬x ∨ y) ∧ (¬y ∨ z) ∧ (x ∨ ¬z) ∧ (z ∨ y)

image source: https://www.iitg.ac.in/deepkesh/CS301/assignment-2/2sat.pdf

9 / 33



Another example

(x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ ¬x3) ∧ (x4 ∨ ¬x1)

10 / 33



Tseitin transformation

• we know that an arbitrary boolean formula can be converted to CNF

• using De Morgan’s law and distributivity property

• but this may result in an exponential explosion of the formula

• example: (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn)

• Tseitin transformation is guaranteed to only linearly increase the size of the formula

11 / 33



Tseitin transformation: Example (source: Wikipedia)

12 / 33



1-SAT to 3-SAT

c = (l )

c ′ = (l ∨ u ∨ v) ∧ (l ∨ ¬u ∨ v) ∧ (l ∨ u ∨ ¬v) ∧ (l ∨ ¬u ∨ ¬v)

c ′ is satisfiable iff c is satisfiable.

13 / 33



1-SAT to 3-SAT

c = (l )

c ′ = (l ∨ u ∨ v) ∧ (l ∨ ¬u ∨ v) ∧ (l ∨ u ∨ ¬v) ∧ (l ∨ ¬u ∨ ¬v)

c ′ is satisfiable iff c is satisfiable.

14 / 33



2-SAT to 3-SAT

c = (l1 ∨ l2)

c ′ = (l1 ∨ l2 ∨ u) ∧ (l1 ∨ l2 ∨ ¬u)

c ′ is satisfiable iff c is satisfiable.

15 / 33



2-SAT to 3-SAT

c = (l1 ∨ l2)

c ′ = (l1 ∨ l2 ∨ u) ∧ (l1 ∨ l2 ∨ ¬u)

c ′ is satisfiable iff c is satisfiable.

16 / 33



k(>3)-SAT to (k-1)-SAT

c = (l1 ∨ l2 ∨ . . . ∨ lk)

c ′ = (l1 ∨ l2 ∨ . . . lk−2 ∨ u) ∧ (lk−1 ∨ lk ∨ ¬u)

c ′ is satisfiable iff c is satisfiable.

17 / 33



k(>3)-SAT to (k-1)-SAT

c = (l1 ∨ l2 ∨ . . . ∨ lk)

c ′ = (l1 ∨ l2 ∨ . . . lk−2 ∨ u) ∧ (lk−1 ∨ lk ∨ ¬u)

c ′ is satisfiable iff c is satisfiable.

18 / 33



breaking 3SAT similarly to get 2SAT fails!

c = (l1 ∨ l2 ∨ l3)

c ′ = (l1 ∨ l2 ∨ u) ∧ (l3 ∨ ¬u) (still 3!)

c ′ = (l1 ∨ u) ∧ (l2 ∨ l3 ∨ ¬u) (still 3!)

19 / 33



breaking 3SAT similarly to get 2SAT fails!

c = (l1 ∨ l2 ∨ l3)

c ′ = (l1 ∨ l2 ∨ u) ∧ (l3 ∨ ¬u) (still 3!)

c ′ = (l1 ∨ u) ∧ (l2 ∨ l3 ∨ ¬u) (still 3!)

20 / 33



breaking 3SAT similarly to get 2SAT fails!

c = (l1 ∨ l2 ∨ l3)

c ′ = (l1 ∨ l2 ∨ u) ∧ (l3 ∨ ¬u) (still 3!)

c ′ = (l1 ∨ u) ∧ (l2 ∨ l3 ∨ ¬u) (still 3!)

21 / 33



Davis-Putnam Algorithm

• unit-clause – if there is a unit clause l , delete all clauses containing l , and delete all
occurrences of ¬l from other clauses

• pure-literal – if there is a pure literal l , delete all clauses containing l

• eliminate a variable by resolution – choose an atom p and perform all possible resolutions
on clauses that clash on p and ¬p. Add these resolvents to the set of clauses and then
delete all the clauses containing p or ¬p.

• use these repeatedly; but use resolution only if the the first two rules do not apply

22 / 33



Davis-Putnam Algorithm

• if empty clause is produced, the formula is unsat

• if no more rules are applicable, report sat

• why does this terminate?

• why is this correct?

• example: (p) ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ (¬r ∨ s ∨ t)

23 / 33



DPLL Algorithm

• creating all possible resolvents is very inefficient

• DPLL improves on the DP algorithm by replacing the variable elimination with a search
for a model of the formula

24 / 33



DPLL

• Davis-Putnam-Logemann-Loveland algorithm (about 60 years old)

• combines search and deduction to decide satisfiability of CNF formulas

• based around backtrack search for a satisfying valuation

25 / 33



DPLL Algorithm

• the state of the algorithm is a pair (F,A)

• a state is successful if A sets some literal in each clause of F to true

• a conflict state is one where A sets every literal in some clause to false

• let F|A denote the formula that we get after simplifying F using A

• (F,A) is a conflict state if F|A contains the empty clause □

• (F,A) is a successful state if F|A is the empty set of clauses

26 / 33



DPLL Algorithm

1. initialize A to be an empty assignment

2. while there are unit clauses {l }, add l 7→ 1 to A

3. if (F,A) is a successful then stop and output A

4. if (F,A) is a conflict state then apply clause learning to get a new clause C

• if C is □ then stop and output unsat

• add C to F; backtrack to the highest level at which C is a unit clause; goto 2

5. add a new decision assignment pi 7→ 1 to A; goto 2

27 / 33



Example1

C1: {¬p1,¬p4, p5}
C2: {¬p1, p6,¬p5}
C3: {¬p1,¬p6, p7}
C4: {¬p1,¬p7,¬p5}
C5: {p1, p4, p6}

A: ⟨p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1⟩

unit propagation generates a sequence of implied assignments: ⟨p5
C17−→ 1, p6

C27−→ 1, p7
C37−→ 1⟩

conflict: C4 becomes false!

1https://www.cs.ox.ac.uk/people/james.worrell/lec7-2015.pdf
28 / 33

https://www.cs.ox.ac.uk/people/james.worrell/lec7-2015.pdf


Learned clause

if clause learning gives a clause C , then we would want

• F ≡ F ∪ C

• C should be a conflict clause

• all variables in C should be decision variables (fixed using decision assignments)

29 / 33



Correctness

• termination – a sequence of decisions leading to a conflict cannot be repeated

• correctness – if empty clause is learned, then F is unsatisfiable (because F ≡ F ∪ C )

30 / 33



Clause learning

A: ⟨p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1, p5
C17−→ 1, p6

C27−→ 1, p7
C37−→ 1⟩

what about the things that were desirable from a learned clause?

31 / 33



Clause learning

A: ⟨p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1, p5
C17−→ 1, p6

C27−→ 1, p7
C37−→ 1⟩

what about the things that were desirable from a learned clause?

32 / 33



Thank you!

33 / 33


