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The need for a richer language

• the logical aspects of natural and artificial languages are much richer

• than what propositional logic can capture

• limited to sentence components like not, and, or, if . . . then

• consider the following declarative sentence

Every student is younger than some instructor.

• a propositional atom denoting this fails to capture the finer logical structure of this
sentence.
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The need for a richer language

Every student is younger than some instructor.

this is about being a student, being an instructor, and being younger than somebody else

we would like a mechanism to express these with their logical relationships

this is what we will use predicates for
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Predicates

• we can use predicates S , I , and Y

• S(John) – John is a student

• I (Paul) – Paul is an instructor

• Y (John, Paul) – John is younger than Paul

• the meaning of these symbols must be specified exactly
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Predicates

• can we now express ”Every student is younger than some instructor.”

• we don’t want to write down every instance of S(.)

• use variables as place holders for concrete values

• S(x) – x is a student

• I (x) – x is an instructor

• Y (x , y) – x is younger than y
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Quantifiers

• can we now express ”Every student is younger than some instructor.”

• Every student is younger than some instructor.

• ∀ (for all) and ∃ (there exists)

• the quantifiers always come attached to a variable

• ∀x (for all x) and ∃z (there exists z)
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Example

• can we now express ”Every student is younger than some instructor.”

• ∀x (S(x) → (∃y (I (y) ∧ Y (x , y))))

• for every x , if x is a student, then there is some y such that y is an instructor and x is
younger than y

• predicates can have any (finite) number of arguments (arity)
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Another example

• Not all birds can fly.

• B(x) – x is a bird

• F (x) – x can fly

• ¬(∀x (B(x) → F (x)))

• alternatively, ∃x (B(x) ∧ ¬F (x))

• does this formula evaluate to true in the world we currently live in?
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Another example

Every child is younger than its mother.

∀x ∀y ((C (x) ∧M(x , y)) → Y (x , y))
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Another example

Andy and Paul have the same maternal grandmother.

∀x ∀y ∀u ∀v ((M(x , y) ∧M(y ,Andy) ∧M(u, v) ∧M(v ,Paul)) → x = u)

• function symbols can help us avoid the inelegent encoding

• equality has been used as a special predicate
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As a formal language

there are two sorts of things involved in a predicate logic formula:

objects that we are talking about – constants, variables, m(a), g(x , y)

expressions denoting objects are called terms

the other sort of things are formulas
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Terms
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Formulas
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Binding properties

• ¬, ∀y , ∃y bind most tightly

• then ∨ and ∧
• then →, which is right-associative
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Another example

Every son of my father is my brother.
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Parse trees

∀x ((P(x) → Q(x)) ∧ S(x , y))
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Free and bound variables

(∀x (P(x) ∧ Q(x))) → (¬P(x) ∨ Q(y))
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Substitution

given a variable x , a term t, and a formula ϕ

we define ϕ[t/x ] to be the formula obtained by replacing each free occurrence of variable x in
ϕ with t
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Substitution: example

example: ((∀x (P(x) ∧ Q(x))) → (¬P(x) ∨ Q(y)))[f (x , y)/x ]
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Undesired side-effects of substitution

substitution must be avoided if t is not free for x in ϕ
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Proof theory (natural deduction rules)

(from the book by Huth and Ryan, pages 107-117)
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Quantifier Equivalence

(from the book by Huth and Ryan, pages 117-122)
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Thank you!
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