COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 13 \& 14 (Predicate Logic)

Kumar Madhukar

madhukar@cse.iitd.ac.in

September 18th and 21st, 2023

The need for a richer language

- the logical aspects of natural and artificial languages are much richer
- than what propositional logic can capture
- limited to sentence components like not, and, or, if ... then
- consider the following declarative sentence

Every student is younger than some instructor.

- a propositional atom denoting this fails to capture the finer logical structure of this sentence.

The need for a richer language

Every student is younger than some instructor.
this is about being a student, being an instructor, and being younger than somebody else we would like a mechanism to express these with their logical relationships this is what we will use predicates for

Predicates

- we can use predicates S, I, and Y
- $S($ John $)$ - John is a student
- I(Paul) - Paul is an instructor
- $Y($ John, Paul $)-$ John is younger than Paul
- the meaning of these symbols must be specified exactly

Predicates

- can we now express "Every student is younger than some instructor."

Predicates

- can we now express "Every student is younger than some instructor."
- we don't want to write down every instance of $S($.
- use variables as place holders for concrete values
- $S(x)-x$ is a student
- $I(x)-x$ is an instructor
- $Y(x, y)-x$ is younger than y

Quantifiers

- can we now express "Every student is younger than some instructor."

Quantifiers

- can we now express "Every student is younger than some instructor."
- Every student is younger than some instructor.
- \forall (for all) and \exists (there exists)

Quantifiers

- can we now express "Every student is younger than some instructor."
- Every student is younger than some instructor.
- \forall (for all) and \exists (there exists)
- the quantifiers always come attached to a variable
- $\forall x$ (for all x) and $\exists z$ (there exists z)

Example

- can we now express "Every student is younger than some instructor."

Example

- can we now express "Every student is younger than some instructor."
- $\forall x(S(x) \rightarrow(\exists y(I(y) \wedge Y(x, y))))$
- for every x, if x is a student, then there is some y such that y is an instructor and x is younger than y
- predicates can have any (finite) number of arguments (arity)

Another example

- Not all birds can fly.
- $B(x)-x$ is a bird
- $F(x)-x$ can fly

Another example

- Not all birds can fly.
- $B(x)-x$ is a bird
- $F(x)-x$ can fly
- $\neg(\forall x(B(x) \rightarrow F(x)))$

Another example

- Not all birds can fly.
- $B(x)-x$ is a bird
- $F(x)-x$ can fly
- $\neg(\forall x(B(x) \rightarrow F(x)))$
- alternatively, $\exists x(B(x) \wedge \neg F(x))$

Another example

- Not all birds can fly.
- $B(x)-x$ is a bird
- $F(x)-x$ can fly
- $\neg(\forall x(B(x) \rightarrow F(x)))$
- alternatively, $\exists x(B(x) \wedge \neg F(x))$
- does this formula evaluate to true in the world we currently live in?

Another example

Every child is younger than its mother.

Another example

Every child is younger than its mother.
$\forall x \forall y((C(x) \wedge M(x, y)) \rightarrow Y(x, y))$

Another example

Andy and Paul have the same maternal grandmother.

Another example

Andy and Paul have the same maternal grandmother.
$\forall x \forall y \forall u \forall v((M(x, y) \wedge M(y$, Andy $) \wedge M(u, v) \wedge M(v$, Paul $)) \rightarrow x=u)$

Another example

Andy and Paul have the same maternal grandmother.
$\forall x \forall y \forall u \forall v((M(x, y) \wedge M(y, A n d y) \wedge M(u, v) \wedge M(v$, Paul $)) \rightarrow x=u)$

- function symbols can help us avoid the inelegent encoding
- equality has been used as a special predicate

As a formal language

there are two sorts of things involved in a predicate logic formula:
objects that we are talking about - constants, variables, $m(a), g(x, y)$
expressions denoting objects are called terms
the other sort of things are formulas

Terms

Formulas

Binding properties

- $\neg, \forall y, \exists y$ bind most tightly
- then \vee and \wedge
- then \rightarrow, which is right-associative

Another example

Every son of my father is my brother.

Parse trees

$$
\forall x((P(x) \rightarrow Q(x)) \wedge S(x, y))
$$

Free and bound variables

$$
(\forall x(P(x) \wedge Q(x))) \rightarrow(\neg P(x) \vee Q(y))
$$

Substitution

given a variable x, a term t, and a formula ϕ
we define $\phi[t / x]$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t

Substitution: example

example: $((\forall x(P(x) \wedge Q(x))) \rightarrow(\neg P(x) \vee Q(y)))[f(x, y) / x]$

Undesired side-effects of substitution

substitution must be avoided if t is not free for x in ϕ
the term $f(y, y)$ is not free for x in this formula

Proof theory (natural deduction rules)

(from the book by Huth and Ryan, pages 107-117)

Quantifier Equivalence

(from the book by Huth and Ryan, pages 117-122)

Thank you!

