
COL703: Logic for Computer Science

(Jul-Nov 2023)

Lectures 13 & 14 (Predicate Logic)

Kumar Madhukar

madhukar@cse.iitd.ac.in

September 18th and 21st, 2023

1 / 33



The need for a richer language

• the logical aspects of natural and artificial languages are much richer

• than what propositional logic can capture

• limited to sentence components like not, and, or, if . . . then

• consider the following declarative sentence

Every student is younger than some instructor.

• a propositional atom denoting this fails to capture the finer logical structure of this
sentence.

2 / 33



The need for a richer language

Every student is younger than some instructor.

this is about being a student, being an instructor, and being younger than somebody else

we would like a mechanism to express these with their logical relationships

this is what we will use predicates for

3 / 33



Predicates

• we can use predicates S , I , and Y

• S(John) – John is a student

• I (Paul) – Paul is an instructor

• Y (John, Paul) – John is younger than Paul

• the meaning of these symbols must be specified exactly

4 / 33



Predicates

• can we now express ”Every student is younger than some instructor.”

• we don’t want to write down every instance of S(.)

• use variables as place holders for concrete values

• S(x) – x is a student

• I (x) – x is an instructor

• Y (x , y) – x is younger than y

5 / 33



Predicates

• can we now express ”Every student is younger than some instructor.”

• we don’t want to write down every instance of S(.)

• use variables as place holders for concrete values

• S(x) – x is a student

• I (x) – x is an instructor

• Y (x , y) – x is younger than y

6 / 33



Quantifiers

• can we now express ”Every student is younger than some instructor.”

• Every student is younger than some instructor.

• ∀ (for all) and ∃ (there exists)

• the quantifiers always come attached to a variable

• ∀x (for all x) and ∃z (there exists z)

7 / 33



Quantifiers

• can we now express ”Every student is younger than some instructor.”

• Every student is younger than some instructor.

• ∀ (for all) and ∃ (there exists)

• the quantifiers always come attached to a variable

• ∀x (for all x) and ∃z (there exists z)

8 / 33



Quantifiers

• can we now express ”Every student is younger than some instructor.”

• Every student is younger than some instructor.

• ∀ (for all) and ∃ (there exists)

• the quantifiers always come attached to a variable

• ∀x (for all x) and ∃z (there exists z)

9 / 33



Example

• can we now express ”Every student is younger than some instructor.”

• ∀x (S(x) → (∃y (I (y) ∧ Y (x , y))))

• for every x , if x is a student, then there is some y such that y is an instructor and x is
younger than y

• predicates can have any (finite) number of arguments (arity)

10 / 33



Example

• can we now express ”Every student is younger than some instructor.”

• ∀x (S(x) → (∃y (I (y) ∧ Y (x , y))))

• for every x , if x is a student, then there is some y such that y is an instructor and x is
younger than y

• predicates can have any (finite) number of arguments (arity)

11 / 33



Another example

• Not all birds can fly.

• B(x) – x is a bird

• F (x) – x can fly

• ¬(∀x (B(x) → F (x)))

• alternatively, ∃x (B(x) ∧ ¬F (x))

• does this formula evaluate to true in the world we currently live in?

12 / 33



Another example

• Not all birds can fly.

• B(x) – x is a bird

• F (x) – x can fly

• ¬(∀x (B(x) → F (x)))

• alternatively, ∃x (B(x) ∧ ¬F (x))

• does this formula evaluate to true in the world we currently live in?

13 / 33



Another example

• Not all birds can fly.

• B(x) – x is a bird

• F (x) – x can fly

• ¬(∀x (B(x) → F (x)))

• alternatively, ∃x (B(x) ∧ ¬F (x))

• does this formula evaluate to true in the world we currently live in?

14 / 33



Another example

• Not all birds can fly.

• B(x) – x is a bird

• F (x) – x can fly

• ¬(∀x (B(x) → F (x)))

• alternatively, ∃x (B(x) ∧ ¬F (x))

• does this formula evaluate to true in the world we currently live in?

15 / 33



Another example

Every child is younger than its mother.

∀x ∀y ((C (x) ∧M(x , y)) → Y (x , y))

16 / 33



Another example

Every child is younger than its mother.

∀x ∀y ((C (x) ∧M(x , y)) → Y (x , y))

17 / 33



Another example

Andy and Paul have the same maternal grandmother.

∀x ∀y ∀u ∀v ((M(x , y) ∧M(y ,Andy) ∧M(u, v) ∧M(v ,Paul)) → x = u)

• function symbols can help us avoid the inelegent encoding

• equality has been used as a special predicate

18 / 33



Another example

Andy and Paul have the same maternal grandmother.

∀x ∀y ∀u ∀v ((M(x , y) ∧M(y ,Andy) ∧M(u, v) ∧M(v ,Paul)) → x = u)

• function symbols can help us avoid the inelegent encoding

• equality has been used as a special predicate

19 / 33



Another example

Andy and Paul have the same maternal grandmother.

∀x ∀y ∀u ∀v ((M(x , y) ∧M(y ,Andy) ∧M(u, v) ∧M(v ,Paul)) → x = u)

• function symbols can help us avoid the inelegent encoding

• equality has been used as a special predicate

20 / 33



As a formal language

there are two sorts of things involved in a predicate logic formula:

objects that we are talking about – constants, variables, m(a), g(x , y)

expressions denoting objects are called terms

the other sort of things are formulas

21 / 33



Terms

22 / 33



Formulas

23 / 33



Binding properties

• ¬, ∀y , ∃y bind most tightly

• then ∨ and ∧
• then →, which is right-associative

24 / 33



Another example

Every son of my father is my brother.

25 / 33



Parse trees

∀x ((P(x) → Q(x)) ∧ S(x , y))

26 / 33



Free and bound variables

(∀x (P(x) ∧ Q(x))) → (¬P(x) ∨ Q(y))

27 / 33



Substitution

given a variable x , a term t, and a formula ϕ

we define ϕ[t/x ] to be the formula obtained by replacing each free occurrence of variable x in
ϕ with t

28 / 33



Substitution: example

example: ((∀x (P(x) ∧ Q(x))) → (¬P(x) ∨ Q(y)))[f (x , y)/x ]

29 / 33



Undesired side-effects of substitution

substitution must be avoided if t is not free for x in ϕ

30 / 33



Proof theory (natural deduction rules)

(from the book by Huth and Ryan, pages 107-117)

31 / 33



Quantifier Equivalence

(from the book by Huth and Ryan, pages 117-122)

32 / 33



Thank you!

33 / 33


