COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 15 \& 16 (Semantics of Predicate Logic)

Kumar Madhukar

madhukar@cse.iitd.ac.in

September 25th and 27th, 2023

Semantics

$$
\forall x \forall y(P(x, y) \rightarrow \exists z(\neg(z=x) \wedge \neg(z=y) \wedge P(x, z) \wedge P(z, y)))
$$

- suppose variables take values from real numbers
- $P(x, y)$ represents $x<y$

Semantics

$$
\forall x \forall y(P(x, y) \rightarrow \exists z(\neg(z=x) \wedge \neg(z=y) \wedge P(x, z) \wedge P(z, y)))
$$

- suppose variables take values from real numbers
- $P(x, y)$ represents $x \leq y$

Semantics

$$
\forall x \forall y(P(x, y) \rightarrow \exists z(\neg(z=x) \wedge \neg(z=y) \wedge P(x, z) \wedge P(z, y)))
$$

- suppose variables take values from natural numbers
- $P(x, y)$ represents $x<y$

σ-structure ${ }^{1}$

Given a signature σ, a σ-structure (or assignment) \mathcal{A} consists of:

- a non-empty set $U_{\mathcal{A}}$ called the universe of the structure;
- for each k-ary predicate symbol P in σ, a k-ary relation $P_{\mathcal{A}} \subseteq \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{k}$;
- for each k-ary function symbol symbol f in σ, a k-ary function, $f_{\mathcal{A}}: \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{k} \rightarrow U_{\mathcal{A}}$;
- for each constant symbol c, an element $c_{\mathcal{A}}$ of $U_{\mathcal{A}}$;
- for each variable x an element $x_{\mathcal{A}}$ of $U_{\mathcal{A}}$.

[^0]
Evaluating terms

- For a constant symbol c we define $\mathcal{A} \llbracket c \rrbracket \stackrel{\text { def }}{=} c_{\mathcal{A}}$.
- For a variable x we define $\mathcal{A} \llbracket x \rrbracket \stackrel{\text { def }}{=} x_{\mathcal{A}}$.
- For a term $f\left(t_{1}, \ldots, t_{k}\right)$, where f is a k-ary function symbol and t_{1}, \ldots, t_{k} are terms, we define $\mathcal{A} \llbracket f\left(t_{1}, \ldots, t_{k}\right) \rrbracket \stackrel{\text { def }}{=} f_{\mathcal{A}}\left(\mathcal{A} \llbracket t_{1} \rrbracket, \ldots, \mathcal{A} \llbracket t_{k} \rrbracket\right)$.

Satisfaction relation

1. $\mathcal{A} \models P\left(t_{1}, \ldots, t_{k}\right)$ if and only if $\left(\mathcal{A} \llbracket t_{1} \rrbracket, \ldots, \mathcal{A} \llbracket t_{k} \rrbracket\right) \in P_{\mathcal{A}}$.
2. $\mathcal{A} \models(F \wedge G)$ if and only if $\mathcal{A} \models F$ and $\mathcal{A} \models G$.
3. $\mathcal{A} \models(F \vee G)$ if and only if $\mathcal{A} \models F$ or $\mathcal{A} \models G$.
4. $\mathcal{A} \models \neg F$ if and only if $\mathcal{A} \not \models F$.
5. $\mathcal{A} \models \exists x F$ if and only if there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \rightarrow a]} \models F$.
6. $\mathcal{A} \models \forall x F$ if and only if $\mathcal{A}_{[x \mapsto a]} \models F$ for all $a \in U_{\mathcal{A}}$.

If we are working in first-order logic with equality then we additionally have
7. $\mathcal{A} \models t_{1}=t_{2}$ if and only if $\mathcal{A} \llbracket t_{1} \rrbracket=\mathcal{A} \llbracket t_{2} \rrbracket$.

Some definitions

- quantifier-depth of a formula
atomic formulas have $0 \mathrm{qd} ; \mathrm{qd}(\neg \phi)=\mathrm{qd}(\phi)$;
$\operatorname{qd}(\phi \vee \psi)=\operatorname{qd}(\phi \wedge \psi)=\max (\operatorname{qd}(\phi), \operatorname{qd}(\psi))$
$\mathrm{qd}(\exists x \phi)=\mathrm{qd}(\forall x \phi)=1+\mathrm{qd}(\phi)$

Some definitions

- quantifier-depth of a formula
atomic formulas have $0 \mathrm{qd} ; \mathrm{qd}(\neg \phi)=\mathrm{qd}(\phi)$;
$\operatorname{qd}(\phi \vee \psi)=\operatorname{qd}(\phi \wedge \psi)=\max (\operatorname{qd}(\phi), \operatorname{qd}(\psi))$
$\operatorname{qd}(\exists x \phi)=\mathrm{qd}(\forall x \phi)=1+\operatorname{qd}(\phi)$
- ground terms - variable-free terms

Some definitions

- quantifier-depth of a formula
atomic formulas have $0 \mathrm{qd} ; \mathrm{qd}(\neg \phi)=\mathrm{qd}(\phi)$;
$\operatorname{qd}(\phi \vee \psi)=\operatorname{qd}(\phi \wedge \psi)=\max (\operatorname{qd}(\phi), \operatorname{qd}(\psi))$
$\operatorname{qd}(\exists x \phi)=\operatorname{qd}(\forall x \phi)=1+\operatorname{qd}(\phi)$
- ground terms - variable-free terms
- a closed formula or a sentence - formula with no free variables
e.g. $\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \rightarrow R(x, z))$ is closed $\forall x(x<(y+1))$ is not closed

Examples

- undirected graph as a σ-structure (σ containing one binary relation E), with the interpretation of E as the edge relation
- σ with one binary relation $<$, interpreted in the usual way over integers, rationals, reals

More definitions

- a first-order formula F over σ is satisfiable if there is a σ-structure \mathcal{A} such that $\mathcal{A} \vDash F$
- if F is not satisfiable, it is called unsatisfiable
- F is called valid if (and only if) $\neg F$ is unsatisfiable
- for a set of formulas \mathcal{S}, we say $\mathcal{S} \models F$ to mean that every σ-structure \mathcal{A} that satisfies \mathcal{S} also satisfies F

Exercise

Consider a signature σ with a constant symbol 0 , a unary function symbol s, and a unary predicate symbol P.

Is $P(0) \wedge \forall x(P(x) \rightarrow P(s(x))) \wedge \exists x \neg P(x)$ satisfiable?

Relevance Lemma

Suppose \mathcal{A} and \mathcal{A}^{\prime} are σ-assignments with the same universe, and identical interpretation of the predicate, function, and constant symbols in σ.

If \mathcal{A} and \mathcal{A}^{\prime} give the same interpretation to each variable occurring free in some σ-formula F, then $\mathcal{A} \vDash F$ iff $\mathcal{A}^{\prime} \models F$.

Proof: Induction.

Special case

If F is a closed formula (or a sentence), and \mathcal{A} and \mathcal{A}^{\prime} are assignments that only differ in interpretation of variables,
then $\mathcal{A} \equiv F$ iff $\mathcal{A}^{\prime} \models F$.

Logical equivalence

First-order formulas F and G are logically equivalent, denoted $F \equiv G$, if for all σ-assignments \mathcal{A}, we have $\mathcal{A} \models F$ iff $\mathcal{A} \models G$.

Example

$\neg \forall x F \equiv \exists x \neg F$

Example

$$
\begin{aligned}
& \neg \forall x F \equiv \exists x \neg F \\
& \neg \exists x F \equiv \forall x \neg F
\end{aligned}
$$

Example

$$
\begin{aligned}
& \neg \forall x F \equiv \exists x \neg F \\
& \neg \exists x F \equiv \forall x \neg F \\
& (\forall x F \wedge G) \equiv \forall x(F \wedge G) \quad(\text { if } x \text { does not occur free in } G)
\end{aligned}
$$

Exercises

- $\exists x(A(x) \rightarrow B(x)) \leftrightarrow \quad \forall x A(x) \rightarrow \exists x B(x)$
- $\forall x(A(x) \vee B(x)) \rightarrow \quad \forall x A(x) \vee \exists x B(x)$

Thank you!

[^0]: ${ }^{1}$ https://www.cs.ox.ac.uk/people/james.worrell/lecture9-2015.pdf

