COL703: Logic for Computer Science (Jul-Nov 2023)

Lectures 15 & 16 (Semantics of Predicate Logic)

Kumar Madhukar

madhukar@cse.iitd.ac.in

September 25th and 27th, 2023

$$\forall x \forall y \ (P(x,y) \rightarrow \exists z \ (\neg(z=x) \land \neg(z=y) \land P(x,z) \land P(z,y)))$$

- suppose variables take values from real numbers
- P(x, y) represents *x* < *y*

$$\forall x \forall y \ (P(x,y) \rightarrow \exists z \ (\neg(z=x) \land \neg(z=y) \land P(x,z) \land P(z,y)))$$

- suppose variables take values from real numbers
- P(x, y) represents $x \le y$

$$\forall x \forall y \ (P(x,y) \rightarrow \exists z \ (\neg(z=x) \land \neg(z=y) \land P(x,z) \land P(z,y)))$$

- suppose variables take values from natural numbers
- P(x, y) represents *x* < *y*

Given a signature σ , a σ -structure (or assignment) \mathcal{A} consists of:

- a non-empty set $U_{\mathcal{A}}$ called the *universe* of the structure;
- for each k-ary predicate symbol P in σ , a k-ary relation $P_{\mathcal{A}} \subseteq \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{\mathcal{A}};$
- for each k-ary function symbol symbol f in σ , a k-ary function, $f_{\mathcal{A}} : \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{\mathcal{A}} \to U_{\mathcal{A}};$
- for each constant symbol c, an element $c_{\mathcal{A}}$ of $U_{\mathcal{A}}$;
- for each variable x an element $x_{\mathcal{A}}$ of $U_{\mathcal{A}}$.

¹https://www.cs.ox.ac.uk/people/james.worrell/lecture9-2015.pdf

- For a constant symbol c we define $\mathcal{A}\llbracket c \rrbracket \stackrel{\text{def}}{=} c_{\mathcal{A}}$.
- For a variable x we define $\mathcal{A}[\![x]\!] \stackrel{\text{def}}{=} x_{\mathcal{A}}$.
- For a term $f(t_1, \ldots, t_k)$, where f is a k-ary function symbol and t_1, \ldots, t_k are terms, we define $\mathcal{A}\llbracket f(t_1, \ldots, t_k) \rrbracket \stackrel{\text{def}}{=} f_{\mathcal{A}}(\mathcal{A}\llbracket t_1 \rrbracket, \ldots, \mathcal{A}\llbracket t_k \rrbracket).$

- 1. $\mathcal{A} \models P(t_1, \ldots, t_k)$ if and only if $(\mathcal{A}\llbracket t_1 \rrbracket, \ldots, \mathcal{A}\llbracket t_k \rrbracket) \in P_{\mathcal{A}}$.
- 2. $\mathcal{A} \models (F \land G)$ if and only if $\mathcal{A} \models F$ and $\mathcal{A} \models G$.
- 3. $\mathcal{A} \models (F \lor G)$ if and only if $\mathcal{A} \models F$ or $\mathcal{A} \models G$.
- 4. $\mathcal{A} \models \neg F$ if and only if $\mathcal{A} \not\models F$.
- 5. $\mathcal{A} \models \exists x F$ if and only if there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \models F$.
- 6. $\mathcal{A} \models \forall x F$ if and only if $\mathcal{A}_{[x \mapsto a]} \models F$ for all $a \in U_{\mathcal{A}}$.

If we are working in first-order logic with equality then we additionally have

7. $\mathcal{A} \models t_1 = t_2$ if and only if $\mathcal{A}\llbracket t_1 \rrbracket = \mathcal{A}\llbracket t_2 \rrbracket$.

• quantifier-depth of a formula

atomic formulas have 0 qd; $qd(\neg \phi) = qd(\phi)$; $qd(\phi \lor \psi) = qd(\phi \land \psi) = max(qd(\phi), qd(\psi))$ $qd(\exists x \phi) = qd(\forall x \phi) = 1 + qd(\phi)$

• quantifier-depth of a formula

atomic formulas have 0 qd; $qd(\neg \phi) = qd(\phi)$; $qd(\phi \lor \psi) = qd(\phi \land \psi) = max(qd(\phi), qd(\psi))$ $qd(\exists x \phi) = qd(\forall x \phi) = 1 + qd(\phi)$

• ground terms – variable-free terms

• quantifier-depth of a formula

atomic formulas have 0 qd; $qd(\neg \phi) = qd(\phi)$; $qd(\phi \lor \psi) = qd(\phi \land \psi) = max(qd(\phi), qd(\psi))$ $qd(\exists x \phi) = qd(\forall x \phi) = 1 + qd(\phi)$

- ground terms variable-free terms
- a closed formula or a sentence formula with no free variables

e.g.
$$\forall x \forall y \forall z \ (R(x, y) \land R(y, z) \rightarrow R(x, z))$$
 is closed
 $\forall x \ (x < (y + 1))$ is not closed

- undirected graph as a σ -structure (σ containing one binary relation E), with the interpretation of E as the edge relation
- σ with one binary relation <, interpreted in the usual way over integers, rationals, reals

- a first-order formula F over σ is satisfiable if there is a σ -structure \mathcal{A} such that $\mathcal{A} \models F$
- if F is not satisfiable, it is called unsatisfiable
- F is called valid if (and only if) $\neg F$ is unsatisfiable
- for a set of formulas S, we say S ⊨ F to mean that every σ-structure A that satisfies S also satisfies F

Consider a signature σ with a constant symbol 0, a unary function symbol s, and a unary predicate symbol P.

Is $P(0) \land \forall x \ (P(x) \to P(s(x))) \land \exists x \neg P(x) \text{ satisfiable}$?

Suppose A and A' are σ -assignments with the same universe, and identical interpretation of the predicate, function, and constant symbols in σ .

If \mathcal{A} and \mathcal{A}' give the same interpretation to each variable occurring free in some σ -formula F,

then $\mathcal{A} \models F$ iff $\mathcal{A}' \models F$.

Proof: Induction.

If F is a closed formula (or a sentence), and A and A' are assignments that only differ in interpretation of variables,

then $\mathcal{A} \models F$ iff $\mathcal{A}' \models F$.

First-order formulas F and G are logically equivalent, denoted $F \equiv G$, if for all σ -assignments A, we have $A \models F$ iff $A \models G$.

 $\neg \forall x \ F \equiv \exists x \neg F$

- $\neg \forall x \ F \equiv \exists x \neg F$
- $\neg \exists x \ F \equiv \forall x \neg F$

- $\neg \forall x \ F \equiv \exists x \neg F$
- $\neg \exists x F \equiv \forall x \neg F$

 $(\forall x \ F \land G) \equiv \forall x \ (F \land G)$ (if x does not occur free in G)

•
$$\exists x \ (A(x) \to B(x)) \quad \leftrightarrow \quad \forall x \ A(x) \to \exists x \ B(x)$$

•
$$\forall x \ (A(x) \lor B(x)) \rightarrow \forall x \ A(x) \lor \exists x \ B(x)$$

Thank you!