- 1. [1 marks] Assume $\Sigma = \{0, 1\}$. Let L be the language of ω -words over Σ that do not contain 01.
 - Give an ω -regular expression for L.
 - Give an NBA (Non-deterministic Büchi Automata) for L.
- 2. [1 marks] Suppose U is the regular language $a(a+b)^*a$. What is the NBA for U^{ω} ?
- 3. **[2.5 marks]** The **F** operator in LTL is used to say that a property is true sometime in the *future*. Let us now introduce the **O** operator (short form for *Once*) to say that property was true sometime in the *past*.

The formal semantics of **O** can be defined as follows. For an ω -word α , let α^i denote the suffix of α starting from the i^{th} position. Then:

 $\alpha^i \models \mathbf{O}\phi \text{ if } \exists j \leq i \text{ such that } \alpha^j \models \phi, \qquad \text{and} \qquad \alpha \models \mathbf{O}\phi \text{ if } \alpha^0 \models \mathbf{O}\phi$

Let p_1 and p_2 be atomic propositions. Take the alphabet $\mathbb{B}^2 = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$ where the top element indicates the value of p_1 . Let $\psi := \mathbf{G}(p_1 \to \mathbf{O}p_2)$.

- (a) Give two examples of ω -words over \mathbb{B}^2 : one which satisfies ψ and one which does not satisfy ψ .
- (b) Show that ψ can be rewritten into an equivalent LTL formula which uses only the standard Until operator **U** and the boolean connectives $(\neg, \land, \lor, \rightarrow)$.
- (c) Construct a Non-deterministic Büchi Automata recognizing the language of ψ .
- 4. [1.5 marks] Let $\Sigma = \{a, b, c\}$. Construct a Büchi automata (deterministic or non-deterministic) for the following languages.
 - (a) set of all ω -words where *abc* occurs at least once
 - (b) set of all ω -words where *abc* occurs infinitely often
 - (c) set of all ω -words where *abc* occurs finitely often
- 5. [2 marks] Let $\Sigma = \{a, b\}$. Define $L_{b \ge a} := \{\alpha \in \Sigma^{\omega} | \text{ in every finite prefix of } \alpha, \text{ the number of b's is } \ge \text{ the number of a's} \}.$
 - (a) Give an example of an ω -word present in $L_{b>a}$.
 - (b) Give an example of an ω -word which is not in $L_{b>a}$.
 - (c) Is $L_{b\geq a} \omega$ -regular? Justify.