
Binary decision trees
Tree for the boolean function f (x, y) ·

= ¬x ∧ ¬y?>=<89:;x

�� ��;
;;

;;
;;

;

?>=<89:;y

�� ��.
..
..
.

?>=<89:;y

�� ��.
..
..
.

1 0 0 0

Note on notation:
▶ 0, 1 for ⊥ (False), ⊤ (True)
▶ Often also have: +, ·,¯ for ∨,∧,¬

To compute value:
1. Start at root
2. Take dashed line if value of var at current node is 0
3. Take solid line if value of var at current node is 1
4. Function value is value at terminal node reached

Binary decision diagram
Similar to Binary Decision Trees, except that nodes can have
multiple in-edges.

A binary decision diagram (BDD) is a finite DAG (Directed Acyclic
Graph) with:

▶ a unique initial node;
▶ all non-terminals labelled with a boolean variable;
▶ all terminals labelled with 0 or 1;
▶ all edges are labelled 0 (dashed) or 1 (solid);
▶ each non-terminal has exactly: one out-edge labelled 0, and one

out-edge labelled 1.

We will use BDDs with two extra properties:
1. Reduced – eliminate redundancy
2. Ordered – canonical ordering of the boolean variables

Reducing BDDs I?>=<89:;x

�� ��<
<<

<<
<<

<

?>=<89:;y

�� ��.
..
..
.

?>=<89:;y

�� ��.
..
..
.

1 0 0 0

remove
duplicate
terminals
−→

?>=<89:;x

�� ��<
<<

<<
<<

<

?>=<89:;y

�� ##G
GG

GG
GG

GG
G

?>=<89:;y

�� }}
1 0

remove
redundant
test −→

?>=<89:;x

��

��&
&&
&&
&&
&&
&&
&&
&

?>=<89:;y

�� ##G
GG

GG
GG

GG
G

1 0

Reducing BDDs II

Removing duplicate non-terminals:?>=<89:;z

~~ @
@@

@@
@@

@@?>=<89:;x

�� ��/
//
//
/

?>=<89:;x

�� ��/
//
//
/

?>=<89:;y

��))SSS
SSSS

SSSS
SSSS

SSSS
S ?>=<89:;y

�� %%KK
KKK

KKK
KKK

K ?>=<89:;y

yy ��0
00
00
0

?>=<89:;y

��uukkkk
kkkk

kkkk
kkkk

kkkk

0 1

−→ ?>=<89:;z

~~ ��8
88

88
88?>=<89:;x

�� ��

?>=<89:;x

|| ��/
//
//
/

?>=<89:;y

�� ##G
GG

GG
GG

GG
G ?>=<89:;y

��vvlll
lll

lll
lll

lll
lll

0 1

Reducing BDDs III

Removing redundant test:?>=<89:;z

~~ ��8
88

88
88?>=<89:;x

�� ��

?>=<89:;x

|| ��/
//
//
/

?>=<89:;y

�� ##G
GG

GG
GG

GG
G ?>=<89:;y

��vvlll
lll

lll
lll

lll
lll

0 1

−→ ?>=<89:;z

��

��8
88

88
88 ?>=<89:;x

|| ��/
//
//
/

?>=<89:;y

�� ##G
GG

GG
GG

GG
G ?>=<89:;y

��vvmmm
mmm

mmm
mmm

mmm
mm

0 1

Reduction Operations

1. Removal of duplicate terminals. If a BDD contains more than
one terminal 0-node, then redirect all edges which point to such
a 0-node to just one of them. Do the same with terminal nodes
labelled 1.

2. Removal of redundant tests. If both outgoing edges of a node n
point to the same node m, then remove node n, sending all its
incoming edges to m.

3. Removal of duplicate non-terminals. If two distinct nodes n and
m in the BDD are the roots of structurally identical subBDDs,
then eliminate one of them and redirect all its incoming edges
to the other one.

All of these operations preserve the BDD-ness of the DAG.

A BDD is reduced if it has been simplified as much as possible using
these reduction operations.

Generality of BDDs

?>=<89:;x

�� ��0
00
00
00?>=<89:;y

��

&&

?>=<89:;z

�� ��/
//
//
//?>=<89:;x

�� %%LL
LLL

LLL
LLL

LL
?>=<89:;y

�� ��1
11
11
1

?>=<89:;x

yy ����
��
��

0 1

?>=<89:;z

�� ��0
00
00
00?>=<89:;y

��

��0
00
00
00
00
00
00
00
0

?>=<89:;x

��

��/
//
//
//?>=<89:;x

�� %%LL
LLL

LLL
LLL

LL
?>=<89:;y

yy ��

0 1

A variable might occur more
than once on a path Ordering of variables on paths is not fixed

Ordered BDDs
▶ Let [x1, ..., xn] be an ordered list of variables without duplicates;
▶ A BDD B has an ordering [x1, ..., xn] if

1. all variables of B occur in [x1, ..., xn]; and
2. if xj follows xi on a path in B then j > i

▶ An ordered BDD (OBDD) is a BDD which has an ordering for
some list of variables.

▶ The orderings of two OBBDs B and B′ are compatible if there
are no variables x, y such that

▶ x is before y in the ordering for B, and
▶ y is before x in the ordering for B′.

Theorem
For a given ordering, the reduced OBDD (ROBDD) representing a given
function f is unique.

If B1 and B2 are two ROBDDs with compatible variable orderings
representing the same boolean function, then they have identical
structure.

Impact of variable ordering on size (I)

Consider the boolean function
f (x1, ..., x2n) = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ ... ∧ (x2n−1 ∨ x2n)

With variable ordering [x1, x2, x3, ..., x2n] ROBDD has 2n+ 2 nodes

For n = 3: ?>=<89:;x1
}}

��

?>=<89:;x2

��

!!C
CCC ?>=<89:;x3

}}

��

?>=<89:;x4

��

!!C
CCC ?>=<89:;x5

}}

��

?>=<89:;x6

 ##FF

FF

0 1

Impact of variable ordering on size (II)
With [x1, x3, ..., x2n−1, x2, x4..., x2n] ROBDD has 2n+1 nodes
For n = 3: ?>=<89:;x1

tt))SSS
SSS

SSS
SS?>=<89:;x3

xx &&LL
LLL

LL
?>=<89:;x3

x x !!D
DD

DD?>=<89:;x5

�� ��:
::

:
?>=<89:;x5

�� ��:
::

:
?>=<89:;x5

�� ��-
--
--
--
--

?>=<89:;x5

��

��
��
��
��
��
��
��
��
��
�?>=<89:;x2

��

..

?>=<89:;x2

66

?>=<89:;x2

��

))

?>=<89:;x2

zz ��

?>=<89:;x4

uu

��:
::

:
?>=<89:;x4

��

��-
--
--
--
-?>=<89:;x6

qq ''NN
NNN

NNN

0 1

There are various heuristics that can help with choosing orderings.

However, improving a given ordering is NP-complete.

Importance of canonical representation

Having a canonical, i.e. unique, computable representation enables
easy tests for

▶ Absence of redundant variables. A boolean function f does not
depend on an input variable x if no nodes occur for x in the
ROBDD for f.

▶ Semantic equivalence. Check f ≡ g by checking whether or not
the ROBDDs for f and g have identical structure.

▶ Validity. Check if the BDD is identical to the one with just the
terminal node 1 and nothing else.

▶ Satisfiability. Check if the BDD is not identical to the one with
just the terminal node 0 and nothing else.

▶ Implication. Check if ∀−→x . f
(−→x) → g

(−→x) by checking
whether or not the ROBDD for f ∧ ¬g is constant 0.

Representations of Boolean Functions

From H&R, Figure 6.1

test for Operations
Representation compact? satisf’y validity ∧ ∨ ¬
Prop. Formulas often hard hard easy easy easy
Formulas in DNF sometimes easy hard hard easy hard
Formulas in CNF sometimes hard easy easy hard hard
Truth Tables never hard hard hard hard hard
Reduced OBDDs often easy easy medium medium easy

Space complexity of representations and time complexities of operations on those
representations.

Note: With a truth table representation, while operations are conceptually easy,
especially when table rows are always listed in some standard order, the time
complexities are hard, as table sizes and hence operation time complexities are
always exponential in the number of input variables.

Binary Decision Diagrams

Binary Decision Diagrams: DAGs, such that
▶ Unique root node
▶ Variables on non-terminal nodes
▶ Truth-values on terminal nodes
▶ Exactly two edges from each non-terminal node, labelled 0, 1

Some notation, for a given BDD node n:
▶ If n is a non-terminal node:

var(n) — the variable label on node n;
lo(n) — the node reached by following the 0 edge from n;
hi(n) — the node reached by following the 1 edge from n;

▶ If n is a terminal node:
val(n) — the truth value labelling n

For a BDD B, the root node is called root(B).

reduce

reduce constructs a ROBDD from an OBDD.

1. Label each OBDD node n with an integer id(n),
2. in a single bottom-up pass, such that:
3. two OBDD nodes m and n have the same label (id(m) = id(n))

if and only if m and n represent the same boolean function.

The ROBDD is then created by using one node from each class of
nodes with the same label.

reduce

Assignment of labels follows the rules for performing reductions.

To label a node n:
▶ Remove duplicate terminals:

if n is a terminal node (i.e., 0 or 1), then set id(n) to be val(n).
▶ Remove redundant tests:

if id(lo(n)) = id(hi(n)) then set id(n) to be id(lo(n)).
▶ Remove duplicate nodes:

if there exists a node m that has already been labelled such that
var(m) = var(n)
lo(m) = lo(n)
hi(m) = hi(n)

, set id(n) to id(m).

Use a hashtable with ⟨var(n), lo(n), hi(n)⟩ keys for O(1) lookup time.
▶ Otherwise, set id(n) to an unused number.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

Reduces to

ONMLHIJKx#41

��

��(
((
((
((
((
((
((
((
((
((

ONMLHIJKx#32

��

 B
BB

BB
BB

BB
BB

B

ONMLHIJKx#23

|| ��
0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

Reduces to

ONMLHIJKx#41

��

��(
((
((
((
((
((
((
((
((
((

ONMLHIJKx#32

��

 B
BB

BB
BB

BB
BB

B

ONMLHIJKx#23

|| ��
0#0 1#1

In practice, labelling and construction are interleaved.

apply

Given compatible OBDDs Bf and Bg that represent formulas f and g,
apply(□,Bf,Bg) computes an OBDD representing f □ g.

▶ where □ represents some binary operation on boolean formulas
for example, ∧, ∨, ⊕

▶ Unary operations can be handled too.
for example, negation: ¬x = x⊕ 1

apply: Shannon expansions
For any boolean formula f and variable x, it can be written as:

f ≡ (¬x ∧ f [0/x]) ∨ (x ∧ f [1/x])

This is the Shannon expansion of f (originally due to G. Boole).

In particular: f □ g can be expanded like so:

f □ g ≡ (¬x ∧ (f [0/x] □ g[0/x])) ∨ (x ∧ (f [1/x] □ g[1/x]))

If a BDD ?>=<89:;x

�� ��5
55

B B′

represents a boolean function f, then:

1. B represents f [0/x] and B′ represents f [1/x]; and
2. The BDD is effectively a compressed representation of f in

Shannon normal form.
So: implement apply recursively on the structure of the BDDs.

apply: Shannon expansions
For any boolean formula f and variable x, it can be written as:

f ≡ (¬x ∧ f [0/x]) ∨ (x ∧ f [1/x])

This is the Shannon expansion of f (originally due to G. Boole).

In particular: f □ g can be expanded like so:

f □ g ≡ (¬x ∧ (f [0/x] □ g[0/x])) ∨ (x ∧ (f [1/x] □ g[1/x]))

If a BDD ?>=<89:;x

�� ��5
55

B B′

represents a boolean function f, then:

1. B represents f [0/x] and B′ represents f [1/x]; and
2. The BDD is effectively a compressed representation of f in

Shannon normal form.
So: implement apply recursively on the structure of the BDDs.

apply: Shannon expansions
For any boolean formula f and variable x, it can be written as:

f ≡ (¬x ∧ f [0/x]) ∨ (x ∧ f [1/x])

This is the Shannon expansion of f (originally due to G. Boole).

In particular: f □ g can be expanded like so:

f □ g ≡ (¬x ∧ (f [0/x] □ g[0/x])) ∨ (x ∧ (f [1/x] □ g[1/x]))

If a BDD ?>=<89:;x

�� ��5
55

B B′

represents a boolean function f, then:

1. B represents f [0/x] and B′ represents f [1/x]; and
2. The BDD is effectively a compressed representation of f in

Shannon normal form.
So: implement apply recursively on the structure of the BDDs.

apply: cases
apply(□, ?>=<89:;x

�� ��5
55

B B′

, ?>=<89:;x

�� ��6
66

C C′

) = ?>=<89:;x
xx ''NN

NNN

apply(□,B,C) apply(□,B′,C′)

apply(□, ?>=<89:;x

�� ��5
55

B B′

, C) = ?>=<89:;x
xx &&NN

NN

apply(□,B,C) apply(□,B′,C)
when C is terminal node, or non-terminal with var(root(C)) > x

apply(□, B , ?>=<89:;x

�� ��6
66

C C′

) = ?>=<89:;x
xx &&NN

NN

apply(□,B,C) apply(□,B,C′)

when B is terminal node, or non-terminal with var(root(B)) > x

apply(□, u , v) = u □ v

apply: example
Compute apply(∨,Bf,Bg), where Bf and Bg are:ONMLHIJKx#R11

��

��+
++
++
++
++
++
++
++
+

ONMLHIJKx#R22

��

$$I
II

II
II

II
II

I

ONMLHIJKx#R33

zz

��

ONMLHIJKx#R44

�� %%KK
KKK

KKK
KKK

K

0#R5 1#R6

∨ ONMLHIJKx#S11

��

��*
**
**
**
**
**
**
**
*

ONMLHIJKx#S23

zz

��

ONMLHIJKx#S34

�� %%KK
KK

KK
KK

KK
K

0#S4 1#S5

apply: recursive calls

(R1, S1)

vv %%KK
KKK

KKK
KKK

KK

(R2, S3)

~~ A
AA

AA
AA

AA
A (R3, S2)

�� ��0
00
00
00
0

(R4, S3)

�� ��0
00
00
00
0 (R3, S3)

�� ��0
00
00
00
0 (R4, S3)

�� ��0
00
00
00
0 (R6, S5)

(R5, S4) (R6, S5) (R4, S3)

~~ ��

(R6, S3)

�� A
AA

AA
AA

AA
A (R5, S4) (R6, S5)

(R5, S4) (R6, S5) (R6, S4) (R6, S5)

apply: memoisation

The recursive apply implementation will generate an OBBD.
▶ Apply reduce to convert it back to a ROBDD.

However, as can be seen from the tree of recursive calls, there are
many calls to apply with the same arguments.

▶ Each invocation of apply where at least one of the arguments
is non-terminal generates two further calls to apply: the
number of calls is worst-case exponential in the sizes of the
original diagrams.

We are not taking into account the sharing in BDDs.

We can greatly improve the run-time by using memoisation:
remembering the results of previous calls.

apply: memoised recursive calls

Memoisation results in at most |Bf| · |Bg| calls to apply.

(R1, S1)(x1)

ww ''OO
OOO

OOO
OOO

(R2, S3)(x2)

��

''OO
OOO

OOO
OOO

(R3, S2)(x3)

��

��

(R3, S3)(x3)

ww ''OO
OOO

OOO
OOO

(R4, S3)(x4)

�� ''OO
OOO

OOO
OOO

(R6, S3)(x4)

wwooo
ooo

ooo
oo

��
(R5, S4)(0) (R6, S5)(1) (R6, S4)(1)

apply: Result
If we are careful to never create the same BDD node twice (using the
same lookup table technique as reduce), then with memoisation, we
automatically get a reduced BDD:GFED@ABCx1

~~

��0
00
00
00
00
00
00
00
0

GFED@ABCx2

��

((PP
PPP

PPP
PPP

PPP
PPP

GFED@ABCx3

vv

��

GFED@ABCx4

�� ((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

0 1

Other Operations

restrict(0, x,Bf) computes ROBDD for f [0/x]
1. For each node n labelled with x, incoming edges are redirected

to lo(n), and the node n is removed.
2. Resulting BDD then reduced with reduce.
3. (again, reduce can be interleaved with the removal.)

exists(x,Bf) computes ROBDD for ∃x. f.
1. Uses the identity

(∃x. f) ≡ f [0/x] ∨ f [1/x]

2. Realised using the restrict and apply functions:

apply(∨, restrict(0, x,Bf), restrict(1, x,Bf))

