COL750: Foundations of Automatic Verification
(Jul-Dec 2024)

CTL Model Checking and BDDs!

Kumar Madhukar

madhukar@cse.iitd.ac.in

September 5th

reusing slides created by Prof. Jacques Fleuriot, University of Edinburgh

(https://homepages.inf.ed.ac.uk/jdf/)
1/14


https://homepages.inf.ed.ac.uk/jdf/

function SATgy ()
/¥ determines the set of states satisfving EX ¢ */
local var X, Y
begin
X := SAT (¢):
Y = preg(X);
return Y
end

2/14



function SATgy (¢. )
/* determines the set of states satisfying E[¢ U ¢] */
local var W . XY

begin
W := SAT (¢);
.}{ = Ag:

Y = SAT (¢0):
repeat until X =Y

begin
X =Y;
Y =Y U(Wnpreg(Y))
end
return Y
end

3/14



function SATgg (&)
/* determines the set of states satisfying EG ¢ */
local var X,V
begin
Y := SAT (¢);
X =0
repeat until X =Y
begin
X:=Y;
Y =Y npreg(Y)
end
return Y
end

4/14



CTL Model Checking with Fairness

5/14



CTL Model Checking with Fairness

® recall the mutex example, where processes were allowed to stay in their critical section as
long as required

® this can lead to violation of the liveness constraint AG (t; — AF ¢1)

® we would like to ignore such paths (assuming that the processes would eventually exit
from its critical section after some finite time)

6/14



CTL Model Checking with Fairness

recall the mutex example, where processes were allowed to stay in their critical section as
long as required

this can lead to violation of the liveness constraint AG (t; — AF ¢1)

we would like to ignore such paths (assuming that the processes would eventually exit
from its critical section after some finite time)

In LTL, we could handle this by saying GF —c; — ¢

7/14



CTL Model Checking with Fairness

® CTL does not allow us to pick fair paths
e NuSMYV allowed us to write FAIRNESS constraints

® NuSMV can handle only simple fairness constraints (of the form: ¢ is true infinitely
often)

® fairness constraints may be more complex (e.g. if ¢ is true infinitely often, then 1) is true
infinitely often)

8/14



Handling Simple Fairness

Let C := {41,%2,...,%,} be n fairness constraints

A computational path is called fair wrt these if every 1); is true infinitely often along that
path

Let Ac and E¢ denote the operators A and E restricted to fair paths

EcU, EcX, and EcG form an adequate set

We need to handle only EcG

9/14



Handing EcG

o qtateq satisfying o

o

Ké . a;';‘s“ec\
: scé\
NS

10/14



State-space Explosion

® abstraction, decomposition, induction

e efficient data structures (binary decision diagrams)

11/14



Boolean functions

® an important descriptive formalism for many hardware and software systems

efficient representation is desirable

a boolean function of n arguments is a function from {0,1}" to {0,1}

truth tables and propositional formulas are two different representations of boolean
functions

® we may also represent them by subclasses of propositional formulas (e.g. CNF, DNF)

different representations have different advantages and disadvantages

12/14



Binary Decision Diagrams

® was invented in the 1990s
® enabled the first practical SAT solver

® modern SAT solvers use CDCL

13/14



Thank you!

14/14



