COL750: Foundations of Automatic Verification (Jul-Dec 2024)

(IC3 – SAT-Based Model Checking without Unrolling)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Oct. 30, Nov. 4

Interpolation Inductive Invariants

V(A)n V(B) U V (CNL) NV(A) BATIE? Y(A) n V(B) U N (dvè) n V(A) V (9) BASIL M(A)NV(B) U (BA fli) Y (CNd) (M Y (A) (A,B) I [cvd] Kin

Quick remarks about Interpolation

• thus, interpolation can be seen as an over-approximation of quantifier elimination

• in our example, we had obtained the interpolant $c \lor d$, where the strongest interpolation would have been $c \oplus d$

Quick remarks about Interpolation

Here is a somewhat easier-to-remember method for annotating the resolution proof to obtain an interpolant:

- for an initial node corresponding to a clause $c \in A$, annotate with c' where c' is obtained from c by keeping only those literals whose variables occur in B
- 2. for an initial node corresponding to a clause $c \in B$, annotate with *true*
- 3. for a derived node with the pivot variable x occurring in B, annotate with the conjunction of its parents' annotations
- for a derived node with the pivot variable x not occurring in B, annotate with the disjunction of its parents' annotations

Interpolation and SAT-Based MC

 when a bad state is reachable from the over-approximation, the over-approximation is not refined

 instead, the over-approximation is discarded completely and the transition system is unrolled further

SAT-Based Model Checking without Unrolling

Q(So) N T(So, S1) NT(S1, S2) NT(S1, S2)

- without making copies of the transition relation
- computes over-approximation of the post-image of the set of reachable states
- maintains multiple candidate invariants

Frames and Invariants

- done by maintaining frames $-F_0, F_1, \ldots, F_k$ which are step-wise assumptions (or over-approximations)
- the frames maintain the following invariants
 - 1. $I_0 \rightarrow F_0$
 - 2. $F_i \to F_{i+1}$ $(0 \le i < k)$
 - 3. $F_i \rightarrow P$ $(0 \le i \le k)$
 - 4. $F_i \wedge T \rightarrow F'_{i+1}$ $(0 \le i < k)$

 $(F_0 \text{ contains the initial set of states})$

(frames are monotonic)

none of the frames contain a bad, i.e. $\neg P$, state)

 $(F_i \text{ over-approximates } i\text{-step reachability})$

Inductive Reasoning

to prove that P is an invariant (that every reachable state satisfies P), it suffices to prove that

- 1. all initial states satisfy P $init(x) \rightarrow P(x)$ (initiation)
- 2. a P-state can only be followed by a P-state $P(x) \wedge trans(x, x') \rightarrow P(x')$ (consecution)

Inductive Reasoning

to prove that P is an invariant (that every reachable state satisfies P), it suffices to prove that

- 1. all initial states satisfy P $init(x) \rightarrow P(x)$
- 2. a *P*-state can only be followed by a *P*-state P(x) $trans(x, x') \rightarrow P(x')$

however, P itself may not be inductive; it may help to have a stronger assertion in that case

1. $init(x) \rightarrow f(x)$ (initiation

- 2. $f(x) \land trans(x, x') \rightarrow f(x')$
- $3(f(x)) \rightarrow P(x)$

(initiation)

(consecution)

consecution

(safety)

Example

$$x = 1;$$

$$y = 1;$$

$$while(*)$$

$$x, y = x + 1, y + x$$

$$x = 1 \Rightarrow x = 1$$

suppose we want to prove the property, P, that $y \ge 1$ is an invariant

721 VX21 => 721

Example

- $(y \ge 1)$ is not an inductive invariant (why? the consecution check fails)
- ullet so, we must look for a strengthening of $(y \ge 1)$

- $(x \ge 0 / y \ge 1)$ is an inductive invariant; but how do we obtain this?
- counterexample to induction (CTI) from the failed consecution check: [x = -1, y = 1]
- the strengthening $(x \ge 0)$ must *eliminate* the CTI

- $(x \ge 0)$ is an inductive invariant
- $(y \ge 1)$ is inductive relative to $(x \ge 0)$

$$(y \ge 1) \land y' = y + x \land x' = x + 1 \rightarrow (y' \ge 1)$$

thus, an incremental proof is possible

Another example

```
x = 1;
y = 1;
while(*)
x, y = x + y, y + x
```


suppose we want to prove the property, P, that $y \ge 1$ is an invariant

Another example

- ullet as in case of previous example, $y \ge 1$ is an invariant but not inductive
- we get a CTI last like time: [x = -1, y = 1]
- $(x \ge 0)$ eliminates the CTI but isn't inductive (unlike the last time)
- but it is inductive relative to the property

$$(y \ge 1) \land (x \ge 0) \land y' = y + x \land x' = x + y \rightarrow (x' \ge 0)$$

seemingly circular reasoning, but not actually so

$$P \wedge \psi \wedge T \rightarrow \psi'$$
 and $\psi \wedge P \wedge T \rightarrow P'$ together imply that $\psi \wedge P$ is an inductive invariant

thus, an incremental proof is still possible (though it may not be possible in every case;
 exercise – construct an example where the entire inductive strengthening must be obtained at once)

Back to frames and invariants

- check that $I \to P$ (that none of the initial states are bad), and set F_0 to I
- check ($I = F_0 \land T \rightarrow P'$ (that bad is not 1-step reachable), and set F_1 to P
- now, we check $F_1 \wedge T \rightarrow P'$
- if not, there must be a CTI $s \in F_1$ that can reach $\neg P$ in one step
- but $s \notin F_0$, else it would have been discovered earlier (while checking $F_0 \land T \rightarrow P'$)
- so, we check if s is reachable from F_0 in one step $F_0 \land \neg s \land T \longrightarrow s'$
- if yes, then s has a predecessor s_{pre} in F_0 (we need to check if s_{pre} is an initial state, or if it has a predecessor, and so on...)
- if not, then $F_1 := (F_1 \land \neg s)$ it may be better to generalize the CTI instead of just eliminating one state at a time

FL = FINTS Come here
but it should not be here.

IC3 on a safe example¹

¹Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf

IC3 on an unsafe example²

 $^{^2} Reference: \ \texttt{https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf}$

```
procedure PDR (model M, property P)
```

```
if (I_0 \land \neg P) is SAT, return "P does not hold" F_0 \leftarrow I_0; k \leftarrow 0;
```

while true do

```
extendFrontier(M, k)
propagateClauses(M, k)
if F_i = F_{i+1} for some i, return "P holds"
k \leftarrow k+1
```

end while

procedure extendFrontier (M, k)

$$F_{k+1} \leftarrow P$$

while $F_k \wedge T \wedge \neg P'$ is SAT do

 $s' \leftarrow$ state labelled with $\neg P$ extracted from the satisfying assignment $s \leftarrow$ predecessor of s' extracted from the satisfying assignment removeCTI(M, s, k)

end while

```
procedure removeCTI (M, s, i)
  if I_0 \wedge s is SAT, return "P does not hold"
  while F_i \wedge T \wedge \neg s \wedge s' is SAT do
    for j \in [0, i]
      F_i \leftarrow F_i \land \neg s
     end for
     t \leftarrow \text{predecessor of } s \text{ extracted from the SAT witness}
     removeCTI(M, t, i - 1)
   end while
```

```
procedure propagateClauses (M, k)
  for i \in [1, k]
    for every clause c \in F_i
      if F_i \wedge T \wedge \neg c' is UNSAT
        F_{i+1} \leftarrow F_{i+1} \wedge c
      end if
    end for
  end for
```

Thank you!