COL750: Foundations of Automatic Verification
(Jul-Dec 2024)

(IC3 — SAT-Based Model Checking without Unrolling)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Oct. 30, Nov. 4

1/33

Mobile User

Mobile User

: %
N
R ceA) DBI an(i e
A/ A, g> evd T4A9T e
\ Q“"}) eVl tfj V\)Bid\/as}m)
(A.2) cvyd E‘f‘i\’ﬁwwaﬁ

Mobile User

d)
<\ 9 (v
)2 m L VE) 0 (R

V() & VTATN(R) ON@vE) V()

v(r9) s vmav) o mr
|

<_d/ 4/33

Mobile User

S0 VC’f> ¢ N(AYE) © N (eni) avy
@f\’i\;baa\ V(a) & V(A)NNE) v N EvR)VR
AW

AN G«Aé Cfﬂ“ N 3’!b e Y(ANV(E) v

oo E) U
> \"‘A N
xﬂsmv P A3 &
pes
%/\M A - rf(t \I‘j[b

z,l,a{""e — @,ﬁ[@\/dj(@%

Mobile User

Quick remarks about Interpolation
A Qavé/\'_d;) rlavevd)

Ega L\;wd A (a\uled?
T cd

° the strongest interpolant of A is obtained from A by existentially quantifying mal

A>T @vol)

an ovef-approximation of quantifier elimination

variables i

® in our example, we had obtained the interpolant ¢ V d, where the strongest interpolation
\

A ¢4

b# t) 0’

would have been ¢ @ d

1B

&
17

6/33

Mobile User

Quick remarks about Interpolation

Here is a somewhat easier-to-remember method for annotating the resolution proof to obtain
an interpolant:

\for an initial node dorresponding to a clause ¢ € A, annotate with ¢’ where ¢’ is obtained
|

from, ¢ lyy=leeping only those literals whose ‘arigbies-occur in B

———

j 2.@n initial node corresponding to a clause ¢ € B, [@nnotate with true l
|| 3. for a derived node with thé pivot variable(: éccurring in B,

nnotate with the conjunction

of its parents’ annotations - T
4 __for a_derived node with the pivot variable x not occurring in B, annotate with % Cpn—r

disjunction of its parents’ annotations —

—— < 1V A
7 7} sano L ¥

Mobile User

Mobile User

Interpolation and SAT-Based MC

\/\/\—"\//f\v‘/

¢ keeps only one candidate invariant (Q)

® when a bad state is reachable from the over-approximation, the over-approximation is not
refined

® instead, the over-approximation is discarded completely and the transj i
unrolled further -

9/33

Mobile User

Mobile User

SAT Based Model Checking without Unrolling

- *]]
. . . " ;) CS‘ A%
® without making copies of the transition relation — t 9144

® computes over-approximation of the post-image of the set of reachable states

® maintains multiple candidate invariants
%

11/33

Mobile User

Frames and Invariants

® done by maintaining frames — Fo, Fi, ..., Fx — which are step-wise assumptions (o

over—approxima.tior.ls) — ;4_@ E VE‘ \—g ..

® the frames maintain the following invariants
__.,——
1. Ih— F ") (Fo contains the initial set of states)
2. Fi— Fixa (0<i<k) (frames are monotonic)
R
3. F =P (0<i<k) 1P none of the frames contain a bad, i.e. =P, state) ‘
3 B :
4. FiANT — Flyy (0<i<k) (F; over-approximates i-step reachability)

12/33

Mobile User

Inductive Reasoning

to prove theﬁ P is an invariant (that every reachable state sat@ it suffices to prove that

. .. . '——-—_!
1. all initial states satisfy P
init(x) — P(x) | (initiation)
2. a P-state can only be followed by a P-state
P(x) A trans(x,x") = P(x’) (consecution)

— e

13/33

Mobile User

Inductive Reasoning

to prove that P is an invariant (that every reachable state satisfies P), it suffices to prove that

1. all initial states satisfy P
init(x) — P(x) < T (initiation)

=

2. a_P-state can only be followed by a P-state CJT ,

y wed by a [state L / '

trans(x,x") — P(x") (consecution)
P E— T ———

however, P itself may not be inductive; it may help to have a stronger assertion in that case

1 init(x) = f(x) \ \V (initiation)
2. f(x) Altrans(x,x") \=\ f(x') K (consecution)

(safety)

14/33

Mobile User

Mobile User

o=l D A3 W

x = 1; ':: '7(.4’1—
R Y %
2 A 71

while ()
X, y=x+1, y +x

suppose we want to prove the property, P, that y > 1 is an invariant

-
—— n ? 16/33

Mobile User

17/33

Mobile User

Example
® (y > 1) is not an inductive invariant (why? the (onsecution)check fails)

® so, we must look for a strengthening of (y > 1)

N

o (x> y > 1)|is an inductive invariant; but how do we obtain this?
———

® counterexample to induction (CTI) from the failed consecution check: [x = —1,y = 1]

:he strengthening (x > 0) must ﬁnate the CTI @ ?

® (x > 0) is an inductive invariant (S

5-===—-

uctive relative to (x > 0!

@ WED iy et oz

e
® thls, an mcre ental proof is possible

18/33

Mobile User

Mobile User

Another example
x =1; S .
y =1 \‘X, » 0 s <

while (%) wnot on e e
X, y=x+y,y +tx W

B

suppose we want to prove the property, P, that y > 1 is an invariant

20/33

Mobile User

21/33

Another example

® as in case of previous example, y > 1 is an invariant but not inductive

-

® we get a CTl last like time: [x = —1,y = 1]

—
k’ (x > 0) eliminates the CTI but isn't inductive (unlike the last time)

e

® but it is inductive relative to the property

y>1 m yV=y+x N X=x+y —

® seeminglytitcular reasoning, but not actually so

(x' > O)

PAYANT —) and YAPANT — P
together imply that 1) A P is an inductive invariant

thus, an incremental proof is still possible (though it may not be_possible in every casﬂ

exercise — construct an example where the entire inductive strengthening must be
obtained at once)

22/33

Mobile User

Mobile User

Back to frames and invariants

® check that /| — P (that none of the initial states are bad), and se< Fo to/) '%“

——e

e check (I €) Fo A T — P’ (that bad is not 1-step reachable), and s

® now, we check F; AT — P’ N\

® if not, there must be a\CTl s € F; that can reach =P in one step

® but s ¢ Fy, else it would ha

e e
® 50, we checkcf s is reachable from Fg in one step [Fo A =s A T

een discovered earlier (while checking Fo A T — P’)

/

initial state, or if
————

24/33

Mobile User

Lomeh

nof be hew-

Mobile User

IC3 on a safe example!

00 01 11 10

3os

'Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf
26/33

https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf
Mobile User

27/33

IC3 on an unsafe example?

2Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf
28/33

https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf

Algorithm

procedure PDR (model M, property P)

if (Io A —P) is SAT, return " P does not hold”
Fo < Iy; k < 0;

while true do
extendFrontier(M, k)
propagateClauses(M, k)
if Fj = Fiy1 for some i, return "P holds”
k+—k+1

end while

end procedure

29/33

Algorithm

procedure extendFrontier (M, k)
Fii1 < P
while Fx A T A =P’ is SAT do
s’ < state labelled with =P extracted from the satisfying assignment
s < predecessor of s’ extracted from the satisfying assignment
removeCTI(M, s, k)

end while

end procedure

30/33

Algorithm

procedure removeCTIl (M, s, i)
if Io A\ s is SAT, return "P does not hold”
while F; A T A =s A s’ is SAT do
for j € [0, 1]
Fi < Fj A =s

end for

t < predecessor of s extracted from the SAT witness
removeCTI(M, t,i — 1)

end while

end procedure 31/33

Algorithm

procedure propagateClauses (M, k)

for i € [1, K]
for every clause ¢ € F;
if F; AT A—-c is UNSAT
Fit1+ FiqiAc
end if
end for
end for

end procedure

32/33

Thank you!

33/33

