COL750: Foundations of Automatic Verification (Jul-Dec 2024)

(IC3 – SAT-Based Model Checking without Unrolling)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Oct. 30, Nov. 4

Quick remarks about Interpolation

Quick remarks about Interpolation

Here is a somewhat easier-to-remember method for annotating the resolution proof to obtain an interpolant:

1 for an initial node corresponding to a clause $c \in A$, annotate with c' where c' is obtained from c by keeping only those literals whose variables occur in B

2. for an initial node corresponding to a clause $c \in B$, annotate with true

3. for a derived node with the pivot variable \overline{x} occurring in B, annotate with the conjunction of its parents' annotations

for a derived node with the pivot variable x not occurring in B , annotate with the disjunction of its parents' annotations

7 / 33

 $(a_1 \vee a_2) \wedge (\overline{a_1} \vee a_3) \wedge (a_2)$ \vee a_2 (a_2) $(a_2\vee a_4)$ à, ٨ a_{2} $a_{\mathcal{L}}$ ą a_{n} a_{2} au trie true a_{\cap} a_{2} true a_0 Na $\mathbf{z}_{\mathbf{z}}$ $a_3 \wedge$ 8 / 33

Interpolation and SAT-Based MC

- when a bad state is reachable from the over-approximation, the over-approximation is not refined
- instead, the over-approximation is discarded completely and the transition system unrolled further

Frames and Invariants

Inductive Reasoning

to prove that P is an invariant (that every reachable state satisfies P), it suffices to prove that

1. all initial states satisfy P $\text{init}(x) \rightarrow P(x)$ (initiation)

2. a P-state can only be followed by a P-state $P(x) \wedge trans(x, x') \rightarrow P(x')$

) (consecution)

Inductive Reasoning

to prove that P is an invariant (that every reachable state satisfies P), it suffices to prove that

1. all initial states satisfy *P*
\n*init(x)*
$$
\rightarrow
$$
 P(x)
\n2. a *P*-state can only be followed by a *P*-state
\n $P(x)$ trans(x, x') \rightarrow *P(x')*
\nhowever, *P* itself may not be inductive; it may help to have a stronger assertion in that case
\n1. *init(x)* \rightarrow *f(x)*
\n2. *f(x)* \land trans(x, x') \rightarrow *f(x')*
\n3. *f(x)* \rightarrow *P(x)*
\n(consection)
\n3. *f(x)* \rightarrow *P(x)*
\n(0.0000)
\n(0.0010)
\n(0.0111)

Example

suppose we want to prove the property, P, that $y \geq 1$ is an invariant

 $\overline{}$

 $\sqrt{2}$

 α . α

 $v \lambda_{51}$ \Rightarrow $\lambda_{31} \vee \lambda_{31}$

$y > 1 \wedge 2 > 1 \wedge 2 = 2 + 1 \wedge 3 = 4 + 2$ $\Rightarrow y' > 1 \wedge x' > 1$

 $321 \vee x \ge 1$ = 331

Example[']

suppose we want to prove the property, P, that $y > 1$ is an invariant

Another example

• as in case of previous example, $y > 1$ is an invariant but not inductive • we get a CTI last like time: $[x = -1, y = 1]$ • $(x \ge 0)$ eliminates the CTI but isn't inductive (unlike the last time) • but it is inductive relative to the property $(y \ge 1)$ $\bigwedge (x \ge 0)$ \wedge $y' = y + x$ \wedge $x' = x + y$ \rightarrow $(x' \ge 0)$ seemingly circular reasoning, but not actually so (PAY) $P \land \psi \land T \to \psi'$ and $\psi \land P \land T \to P'$ together imply that $\psi \wedge P$ is an inductive invariant • thus, an incremental proof is still possible (though it may not be possible in every case; exercise – construct an example where the entire inductive strengthening must be obtained at once)

Back to frames and invariants

- check that $I \rightarrow P$ (that none of the initial states are bad), and set F_0 to I
- $\bullet\,$ check $(I=)$ $F_0\wedge\, T\rightarrow P'$ (that bad is not 1-step reachable), and set F_1 to P
- $\bullet\,$ now, we check $F_1\wedge\, \overline{\,T\,}\rightarrow P'$
- if not, there must be a CTI $s \in F_1$ that can reach $\neg P$ in one step
- $\bullet\,$ but $s\notin F_0$, else it would have been discovered earlier (while checking $F_0\wedge\,T\to P'$)
- so, we check if s is reachable from F_0 in one step $(F_0 \wedge \neg s \wedge \overline{I} \rightarrow \neg s')$
- if yes, then s has a predecessor s_{pre} in F_0 (we need to check it s_{pre} is an initial state, or if it has a predecessor, and so on..)
- if not, then $F_1 := (F_1 \wedge \neg s)$ lit may be better to generalize the CTI instead of just eliminating one state at a time

$\overline{IC3}$ on a safe example¹

¹Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf

$IC3$ on an unsafe example²

²Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf

Algorithm

procedure PDR (model M, property P)

```
if (I_0 \wedge \neg P) is SAT, return "P does not hold"
F_0 \leftarrow I_0: k \leftarrow 0:
```
while true do

```
extendFrontier(M, k)propagateClasses(M, k)if F_i = F_{i+1} for some i, return "P holds"
k \leftarrow k + 1
```
end while

end procedure

Algorithm

procedure extendFrontier (M, k)

 $F_{k+1} \leftarrow P$

while $F_k \wedge T \wedge \neg P'$ is SAT do

 $s' \leftarrow$ state labelled with $\neg P$ extracted from the satisfying assignment $s \leftarrow$ predecessor of s' extracted from the satisfying assignment removeCTI (M, s, k)

end while

end procedure

Algorithm

```
procedure removeCTI (M, s, i)
```

```
if I_0 \wedge s is SAT, return "P does not hold"
```

```
while F_i \wedge T \wedge \neg s \wedge s' is SAT do
```

```
for j \in [0, i]F_i \leftarrow F_i \wedge \neg send for
```
 $t \leftarrow$ predecessor of s extracted from the SAT witness removeCTI($M, t, i - 1$)

end while

end procedure $31 / 33$

procedure propagateClauses (M, k)

```
for i \in [1, k]for every clause c \in F_iif F_i \wedge T \wedge \neg c' is UNSAT
        \mathit{F}_{i+1} \leftarrow \mathit{F}_{i+1} \wedge cend if
  end for
end for
```
end procedure

Thank you!