COL750: Foundations of Automatic Verification (Jul-Dec 2024)

Lectures 05 & 06 (LTL: Syntax and Semantics)

Kumar Madhukar

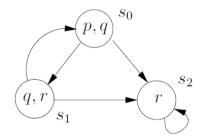
madhukar@cse.iitd.ac.in

Aug 5th and 8th

- has connectives that allow us to refer to the future
- models time as a sequence of states, extending infinitely into the future
- sequence of states is called a computational path
- since the future is not determined, we consider all possible paths

See Sect. 3.2.1 of the Logic in Computer Science book by Huth and Ryan.

- Well-formed formulas
- Binding priorities
- Parse trees
- Subformulas of an LTL formula



Let $\mathcal{M} = (S, \rightarrow, \mathcal{L})$ be a model and $\pi = s_1 \rightarrow s_2 \rightarrow \ldots$ be a path in \mathcal{M} .

Whether π satisfies an LTL formula is defined by the satisfaction relation \vDash as follows:

$$\begin{aligned} \pi \vDash \top \\ \pi \nvDash \downarrow \\ \pi \vDash p \text{ iff } p \in L(s_1) \\ \pi \vDash \neg \phi \text{ iff } \pi \nvDash \phi \\ \pi \vDash \phi_1 \land \phi_2 \text{ iff } \pi \vDash \phi_1 \text{ and } \pi \vDash \phi_2 \\ \pi \vDash \phi_1 \lor \phi_2 \text{ iff } \pi \vDash \phi_1 \text{ or } \pi \vDash \phi_2 \\ \pi \vDash \phi_1 \to \phi_2 \text{ iff } \pi \vDash \phi_2 \text{ whenever } \pi \vDash \phi_1 \\ \pi \vDash X \phi \text{ iff } \pi^2 \vDash \phi \\ \pi \vDash G \phi \text{ iff, for all } i \ge 1, \pi^i \vDash \phi \end{aligned}$$

Let $\mathcal{M} = (S, \rightarrow, \mathcal{L})$ be a model and $\pi = s_1 \rightarrow s_2 \rightarrow \ldots$ be a path in \mathcal{M} .

Whether π satisfies an LTL formula is defined by the satisfaction relation \vDash as follows:

 $\pi \models \mathbf{F} \phi$ iff there is some $i \ge 1$ such that $\pi^i \models \phi$ $\pi \models \phi \cup \psi$ iff there is some $i \ge 1$ such that $\pi^i \models \psi$ and for all $j = 1, \ldots, i - 1$ we have $\pi^j \models \phi$

Let $\mathcal{M} = (S, \rightarrow, \mathcal{L})$ be a model and $\pi = s_1 \rightarrow s_2 \rightarrow \ldots$ be a path in \mathcal{M} .

Whether π satisfies an LTL formula is defined by the satisfaction relation \vDash as follows:

 $\pi \vDash \phi \ W \ \psi$ iff either there is some $i \ge 1$ such that $\pi^i \vDash \psi$ and for all $j = 1, \ldots, i-1$ we have $\pi^j \vDash \phi$; or for all $k \ge 1$ we have $\pi^k \vDash \phi$ $\pi \vDash \phi \ R \ \psi$ iff either there is some $i \ge 1$ such that $\pi^i \vDash \phi$ and for all $j = 1, \ldots, i$ we have $\pi^j \vDash \psi$, or for all $k \ge 1$ we have $\pi^k \vDash \psi$. • it is impossible to get to a state where started holds, but ready does not hold

• for any state, if a request occurs, then it will eventually be granted

• a certain process is enabled infinitely often on every computational path

• on all paths, a certain process will eventually become deadlocked

• if a process is enabled infinitely often, then it runs infinitely often

• an upward travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor

• the lift can remain idle on the third floor with its doors closed

See Sect. 3.2.4 and Sect. 3.2.5 of the Logic in Computer Science book by Huth and Ryan.

Thank you!