COL750: Foundations of Automatic Verification (Jan-May 2023)

Extra Lecture (LTL Model Checking)¹

Kumar Madhukar

madhukar@cse.iitd.ac.in

March 6th

¹to make-up for the one cancelled on Feb 13th

LTL to Büchi Automata

- Construction
- Correctness

Here is the reference material for the construction and the correctness proof:

https://www.cmi.ac.in/~madhavan/papers/pdf/isical97.pdf (see Section 3)

Let α be an LTL formula.

Let $Voc(\alpha)$ be the set of atomic propositions used in α .

Let M (= P_0, P_1, \ldots) be an infinite word over $2^{Voc(\alpha)}$.

 $M \in \mathcal{L}(\mathcal{A}_{\alpha}, \mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{k})$ iff $M, 0 \vDash \alpha$

Let A_0, A_1, \ldots be an accepting run of \mathcal{A}_{α} on M.

For all $\beta \in CL(\alpha)$ and for every $i \ge 0$, we show that

 $M, i \vDash \beta$ iff $\beta \in A_i$

Induction (on structure of β).

If β is an atomic proposition p,

 $M, i \vDash p$ iff $p \in P_i$ iff $p \in A_i$

$\beta = \neg \gamma$

 $\begin{array}{ll} M,i \vDash \beta & iff \quad M,i \vDash \neg \gamma \\ iff \quad (by the induction hypothesis) \ \gamma \notin A_i \\ iff \quad (by the definition of an atom) \ \neg \gamma \in A_i \\ iff \quad \beta \in A_i \end{array}$

$$\beta = \gamma \vee \delta$$

Exercise.

 $\beta = X\gamma$

 $\begin{array}{ll} M, i \vDash \beta & iff \quad M, i+1 \vDash \gamma \\ iff \quad (by the induction hypothesis) \quad \gamma \in A_{i+1} \\ iff \quad (because \ A_i \longrightarrow A_{i+1}) \quad X\gamma \in A_i \\ iff \quad \beta \in A_i \end{array}$

 $\beta = \gamma U \delta$

(forward) $M, i \vDash \beta \rightarrow \beta \in A_i$

From the semantics of until, we know that

 $M, k \vDash \delta$, for some $k \ge i$, and for all $i \le j < k$, $M, j \vDash \gamma$

We show $\beta \in A_i$ by a second induction on k - i

(forward)
$$M, i \vDash \beta \rightarrow \beta \in A_i$$

We show $\beta \in A_i$ by a second induction on k - i

Base case: (k - i = 0)

 $M, i \models \delta$ implies $\delta \in A_i$ (main induction hypothesis), implies $\beta \in A_i$ (definition of atoms)

 $M, i \vDash \gamma$, and $M, (i + 1) \vDash \gamma U \delta$

 $M, i \vDash \gamma$, and $M, (i + 1) \vDash \gamma U \delta$

 $\gamma U \delta \in A_{i+1}$ (secondary induction hypothesis)

 $M, i \vDash \gamma$, and $M, (i + 1) \vDash \gamma U \delta$

 $\gamma U \delta \in A_{i+1}$ (secondary induction hypothesis)

 $X(\gamma U\delta) \in A_i$ (the way transitions have been set up)

 $M, i \vDash \gamma$, and $M, (i + 1) \vDash \gamma U \delta$

 $\gamma U \delta \in A_{i+1}$ (secondary induction hypothesis)

 $X(\gamma U\delta) \in A_i$ (the way transitions have been set up)

 $\gamma \in A_i$ (main induction hypothesis)

 $M, i \vDash \gamma$, and $M, (i + 1) \vDash \gamma U \delta$

 $\gamma U \delta \in A_{i+1}$ (secondary induction hypothesis)

 $X(\gamma U\delta) \in A_i$ (the way transitions have been set up)

 $\gamma \in A_i$ (main induction hypothesis)

 $\gamma U \delta \in A_i$ (definition of atoms)

(reverse) $\beta \in A_i \rightarrow M, i \vDash \beta$

Let *m* be the index of the until formula β .

Since A_0, A_1, \ldots is an accepting run of $(\mathcal{A}_{\alpha}, \mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_k)$, there must exist a $k \ge i$ such that $A_k \in \mathcal{G}_m$. Take the least such k.

Induction on (k - i).

Base case: k = i.

 $A_i \in G_m$. But $\gamma U \delta \in A_i$. So, $\delta \in A_i$. $M, i \vDash \delta$ (main induction hypothesis) $M, i \vDash \gamma U \delta$

Since $A_i \notin G_m$, $\delta \notin A_i$.

Since $A_i \notin G_m$, $\delta \notin A_i$.

 $\gamma, X(\gamma U\delta) \in A_i$

Since $A_i \notin G_m$, $\delta \notin A_i$.

 $\gamma, X(\gamma U \delta) \in A_i$

Because there is a transition from A_i to A_{i+1} , $\gamma U \delta \in A_{i+1}$

Since $A_i \notin G_m$, $\delta \notin A_i$.

 $\gamma, X(\gamma U\delta) \in A_i$

Because there is a transition from A_i to A_{i+1} , $\gamma U \delta \in A_{i+1}$

 $M, (i + 1) \vDash \gamma U \delta$ (secondary induction hypothesis)

Since $A_i \notin G_m$, $\delta \notin A_i$.

 $\gamma, X(\gamma U\delta) \in A_i$

Because there is a transition from A_i to A_{i+1} , $\gamma U \delta \in A_{i+1}$

 $M, (i + 1) \vDash \gamma U \delta$ (secondary induction hypothesis) $M, i \vDash \gamma$ (main induction hypothesis)

Since $A_i \notin G_m$, $\delta \notin A_i$.

 $\gamma, X(\gamma U\delta) \in A_i$

Because there is a transition from A_i to A_{i+1} , $\gamma U \delta \in A_{i+1}$

$$\begin{split} & M, (i+1) \vDash \gamma U \delta \text{ (secondary induction hypothesis)} \\ & M, i \vDash \gamma \text{ (main induction hypothesis)} \\ & M, i \vDash \gamma U \delta \text{ (semantics of until)} \end{split}$$

Suppose, $M = P_0, P_1, \ldots$, such that $M, 0 \vDash \alpha$

For each $i \ge 0$, define A_i to be the set $\{\beta \in \mathsf{CL}(\alpha) \mid M, i \vDash \beta\}$

Claim: each A_i is an atom, two consecutive atoms are connected by a transition in our construction, and A_0 is in an initial state. (exercise: verify these claims)

Claim: A_0, A_1, \ldots is an accepting run.

Suppose not.

Let G_m is the one not visited infinitely often. There is a k such that for all $j \ge k$, $A_j \notin G_m$.

 $\gamma_m U \delta_m \in A_j, \ \delta_m \notin A_j$

But the way A_k has been constructed, $M, k \models \gamma_m U \delta_m$.

This conflicts with the fact that δ_m is not true any time in the future!

A language $A \subseteq \Sigma^{\omega}$ is said to be non-counting if there is a number n_0 such that for every $n \ge n_0$ and for every $u, v \in \Sigma^*$ and $\alpha \in \Sigma^{\omega}$,

$$uv^n \alpha \in A$$
 iff $uv^{n+1} \alpha \in A$

A is said to be counting if it is not non-counting.

Counting and Non-counting Languages

- $\{a, b\}^{\omega}$ is non-counting.
- $a^*b\{a, b\}^{\omega}$ is also non-counting. Why? Exercise.
- $(aa)^*b^\omega$ is counting. Why? Exercise.
- LTL can only define non-counting languages. (proof not in scope; not discussed in class)

- no special treatment required
- the fairness constraints can be expressed in the LTL formula itself
- to restrict to paths where ϕ is true infinitely often, while verifying ψ , we instead verify $GF\phi \rightarrow \psi$

LTL Model Checking using CTL Model Checking

- the existence of an infinite path can be checked with EG \top
- the acceptance criteria can be given as fairness constraints 'FAIRNESS $\neg(\delta U\gamma) \lor \gamma$ '
- this constraint essentially says that it should hold infinitely often that if $\delta U\gamma$ is true, then γ is also true
- such a fairness constraint is added for every until formula is the closure

Thank you!