
COL750: Foundations of Automatic Verification

(Jan-May 2023)

Lectures 19 & 20 (Interpolation and SAT-Based Model Checking)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Mar 27th and 29th

1 / 14



Bounded Model Checking: Recap

• primarily a bug finding technique

• but what to do when no bugs are being found

• use k-induction to obtain proofs

• strengthen the criteria for the base case [i.e., p holds in the first k states starting from the
initial state]

• weaken the criteria for the step case [i.e., if p holds in all states in any sequence of k states
on any path, then it also holds in the (k + 1)th state]

2 / 14



k-induction

• base case
I (s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk) ∧ ¬p(sk)

• step case
pj ∧ T (sj , sj+1) ∧ pj+1 ∧ T (sj+1, sj+2) ∧ . . . ∧ pj+k−1 ∧ T (sj+k−1, sj+k) ∧ ¬p(sj+k)

• if base and step cases both are unsat for any k , then p holds globally along all paths

• if base case is sat (for some k), we get a counterexample (of length k)

• if step case is sat (then no conclusion can be made about the property, because sj was
arbitrary and therefore may not have been reachable), increase k

• case for incremental sat solving (base and step case formulas have a lot of overlap)

3 / 14



Recall example

• 6 and 7 are neither initial states nor reachable; so AG q holds

• but the step case of k induction is bound to fail for any k

• to obtain a complete variant of k-induction for AG p properties, we add a conjunct that
all states on any counterexample to the step-case are pairwise different (why? – exercise)

4 / 14



Model Checking with Inductive Invariants

• inductive reasoning can be applied to prove properties of the form AG p

• given a model M, the post-image of a set of states Q is the set of states that are
reachable from Q in one transition (in M)

post-image(Q) = {s ′ | ∃s ∈ Q.(s, s ′) ∈ TM}

• we say I to be an inductive invariant for the property AG p if the following conditions
hold:

1. I includes all initial states [initiation]

2. I must be closed under the transition relation (i.e., post-image(I ) ⊆ I holds) [consecution]

3. I must not include a ¬p state [safety]

5 / 14



Algorithmically computing an inductive invariant

• recall the BMC for AG p, for bound k

I (s0) ∧
∧k−1

i=0 T (si , si+1) ∧
∨k

i=0 ¬p(si )

• let us omit the check for p(s0) from here and do this separately, and also replace the set
of initial states I with an arbitrary set of states Q

Q(s0) ∧
∧k−1

i=0 T (si , si+1) ∧
∨k

i=1 ¬p(si )

• and now let us rewrite this by splitting the formula into two parts

Q(s0) ∧ T (s0, s1) ∧
∧k−1

i=1 T (si , si+1) ∧
∨k

i=1 ¬p(si )

6 / 14



Algorithm

if S0 ∧ ¬p is SAT return M 2 AG p S0 is the initial set of states

k := 1; Q := S0;

while true do
A := Q(s0) ∧ T (s0, s1); B :=

∧k−1
i=1 T (si , si+1) ∧

∨k
i=1 ¬p(si )

if (A ∧ B) is SAT then
if Q = S0 return M 2 AG p
increase k ; Q := S0 the over-approximate Q is not corrected, but reset

else
I := compute-interpolant(A, B)
if I ⊆ Q return M � AG p Q is a safe inductive invariant

Q := Q ∪ I
end if

end while 7 / 14



Why is this correct?

• whenever it returns M 2 AG p, it is because of a counterexample returned from a
concrete BMC instance

• Assumption 1: I does not contain any state labelled with ¬p

• Assumption 2: I over-approximates the post-image of Q

• these two assumptions imply that Q is indeed a safe inductive invariant

• but what about the assumptions? (they will be guaranteed by the way we generate I )

8 / 14



Why is it complete (for finite-state systems)?

• if Q stops increasing (with the augmentation of I ) then the algorithm stops

• otherwise Q strictly increases each time in the else branch

• this cannot go on; so, k must increase eventually

• if the property does not hold, k must eventually be increased to the length of the shortest
counterexample (and in that case, the immediate next SAT query will give us that
counterexample)

• if the property holds, k will eventually reach the diameter of the model M and then
post-image will not be able to able any new state (Q will stop increasing)

9 / 14



Interpolation

• A and B first-order formulas, such that A ∧ B is unsat

• an interpolant I for A and B is a first-order formula such that

A⇒ I and I ⇒ ¬B

• Craig showed that interpolants exist for any two inconsistent first-order formulas A and B

10 / 14



Craig’s Interpolation Theorem

Given an inconsistent pair of first-order formulas A and B, there exists an interpolant I such
that

1. A implies I ,

2. I is inconsistent with B, and

3. I uses only symbols that are both in A and B.

Algorithmic techniques for computing interpolants from unsat proofs (of A∧B) exist for many
fragments of first-order logic.

We will restrict ourselves, here, to resolution proofs and propositional logic formulas.

11 / 14



Proving the two assumptions given that I is an interpolant

• Assumption 1: I does not contain any state labelled with ¬p

Note that I must be inconsistent with B. Now, assume that there is a s ∈ I such that
¬p(s). But then B will be satisfied. (Why? Because the right conjunct of B gets satisfied
because of s, and the left conjunct is satisfied because we work under the assumption
that there is an outgoing transition from every state in the model.)

• Assumption 2: I over-approximates the post-image of Q

Suppose not. Let there be a state s ∈ post-image(Q) such that s /∈ I . But this also
means that s cannot be in A (because A⇒ I ). But look at the structure of A – it has all
the states that are reachable from Q in one step (i.e., post-image(Q)). So, s cannot be in
post-image(Q).

12 / 14



Computing interpolant

The notes on interpolation (uploaded on Teams as itp-notes.pdf), which is nothing but
Section 18.6 from the Handbook of Satisfiability, summarizes what was covered in the class.

13 / 14



Thank you!

14 / 14


