COL750: Foundations of Automatic Verification (Jan-May 2023)

Lectures 19 \& 20 (Interpolation and SAT-Based Model Checking)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Mar 27th and 29th

Bounded Model Checking: Recap

- primarily a bug finding technique
- but what to do when no bugs are being found
- use k-induction to obtain proofs
- strengthen the criteria for the base case [i.e., p holds in the first k states starting from the initial state]
- weaken the criteria for the step case [i.e., if p holds in all states in any sequence of k states on any path, then it also holds in the $(k+1)^{\text {th }}$ state]

k-induction

- base case

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \neg p\left(s_{k}\right)
$$

- step case
$p_{j} \wedge T\left(s_{j}, s_{j+1}\right) \wedge p_{j+1} \wedge T\left(s_{j+1}, s_{j+2}\right) \wedge \ldots \wedge p_{j+k-1} \wedge T\left(s_{j+k-1}, s_{j+k}\right) \wedge \neg p\left(s_{j+k}\right)$
- if base and step cases both are unsat for any k, then p holds globally along all paths
- if base case is sat (for some k), we get a counterexample (of length k)
- if step case is sat (then no conclusion can be made about the property, because s_{j} was arbitrary and therefore may not have been reachable), increase k
- case for incremental sat solving (base and step case formulas have a lot of overlap)

Recall example

- 6 and 7 are neither initial states nor reachable; so AG q holds
- but the step case of k induction is bound to fail for any k
- to obtain a complete variant of k-induction for AG p properties, we add a conjunct that all states on any counterexample to the step-case are pairwise different (why? - exercise)

Model Checking with Inductive Invariants

- inductive reasoning can be applied to prove properties of the form AG p
- given a model M, the post-image of a set of states Q is the set of states that are reachable from Q in one transition (in M)
$\operatorname{post-image}(Q)=\left\{s^{\prime} \mid \exists s \in Q .\left(s, s^{\prime}\right) \in T_{M}\right\}$
- we say I to be an inductive invariant for the property AG p if the following conditions hold:

1. I includes all initial states [initiation]
2. I must be closed under the transition relation (i.e., post-image $(I) \subseteq I$ holds) [consecution]
3. I must not include a $\neg p$ state [safety]

Algorithmically computing an inductive invariant

- recall the BMC for AG p, for bound k

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{k} \neg p\left(s_{i}\right)
$$

- let us omit the check for $p\left(s_{0}\right)$ from here and do this separately, and also replace the set of initial states $/$ with an arbitrary set of states Q $Q\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=1}^{k} \neg p\left(s_{i}\right)$
- and now let us rewrite this by splitting the formula into two parts $Q\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \bigwedge_{i=1}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=1}^{k} \neg p\left(s_{i}\right)$

Algorithm

$$
\begin{aligned}
& \text { if } S_{0} \wedge \neg p \text { is SAT return } M \not \models A G p \quad S_{0} \text { is the initial set of states } \\
& \mathrm{k}:=1 ; \mathrm{Q}:=S_{0} ;
\end{aligned}
$$

while true do

```
\(\mathrm{A}:=Q\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) ;\)
\[
\mathrm{B}:=\bigwedge_{i=1}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=1}^{k} \neg p\left(s_{i}\right)
\]
```

if $(A \wedge B)$ is SAT then
if $Q=S_{0}$ return $M \not \models A G p$ increase $k ; Q:=S_{0}$
the over-approximate Q is not corrected, but reset
else
I := compute-interpolant(A, B)
if $I \subseteq Q$ return $M \vDash A G p$
Q is a safe inductive invariant
$Q:=Q \cup I$
end if

end while

Why is this correct?

- whenever it returns $M \not \models A G p$, it is because of a counterexample returned from a concrete BMC instance
- Assumption 1: I does not contain any state labelled with $\neg p$
- Assumption 2: I over-approximates the post-image of Q
- these two assumptions imply that Q is indeed a safe inductive invariant
- but what about the assumptions? (they will be guaranteed by the way we generate I)

Why is it complete (for finite-state systems)?

- if Q stops increasing (with the augmentation of I) then the algorithm stops
- otherwise Q strictly increases each time in the else branch
- this cannot go on; so, k must increase eventually
- if the property does not hold, k must eventually be increased to the length of the shortest counterexample (and in that case, the immediate next SAT query will give us that counterexample)
- if the property holds, k will eventually reach the diameter of the model M and then post-image will not be able to able any new state (Q will stop increasing)

Interpolation

- A and B first-order formulas, such that $A \wedge B$ is unsat
- an interpolant I for A and B is a first-order formula such that
$A \Rightarrow I \quad$ and $\quad I \Rightarrow \neg B$
- Craig showed that interpolants exist for any two inconsistent first-order formulas A and B

Craig's Interpolation Theorem

Given an inconsistent pair of first-order formulas A and B, there exists an interpolant I such that

1. A implies I,
2. I is inconsistent with B, and
3. I uses only symbols that are both in A and B.

Algorithmic techniques for computing interpolants from unsat proofs (of $A \wedge B$) exist for many fragments of first-order logic.

We will restrict ourselves, here, to resolution proofs and propositional logic formulas.

Proving the two assumptions

- Assumption 1: I does not contain any state labelled with $\neg p$

Note that I must be inconsistent with B. Now, assume that there is a $s \in I$ such that $\neg p(s)$. But then B will be satisfied. (Why? Because the right conjunct of B gets satisfied because of s, and the left conjunct is satisfied because we work under the assumption that there is an outgoing transition from every state in the model.)

- Assumption 2: I over-approximates the post-image of Q

Suppose not. Let there be a state $s \in \operatorname{post-image}(Q)$ such that $s \notin I$. But this also means that s cannot be in A (because $A \Rightarrow I$). But look at the structure of $A-$ it has all the states that are reachable from Q in one step (i.e., post-image (Q)). So, s cannot be in post-image (Q).

Computing interpolant

The notes on interpolation (uploaded on Teams as itp-notes.pdf), which is nothing but Section 18.6 from the Handbook of Satisfiability, summarizes what was covered in the class.

Thank you!

