COL750: Foundations of Automatic Verification (Jan-May 2023)

Lectures 21 \& 22 (IC3 - SAT-Based Model Checking without Unrolling)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Apr 3rd and 6th

Quick remarks about Interpolation

- recall the example from the last class (please see itp-notes.pdf, uploaded on Teams)
- the strongest interpolant of A is obtained from A by existentially quantifying over all local variables in A
- thus, interpolation can be seen as an over-approximation of quantifier elimination
- in our example, we had obtained the interpolant $c \vee d$, where the strongest interpolation would have been $c \oplus d$

Quick remarks about Interpolation

Here is a somewhat easier-to-remember method for annotating the resolution proof to obtain an interpolant:

1. for an initial node corresponding to a clause $c \in A$, annotate with c^{\prime} where c^{\prime} is obtained from c by keeping only those literals whose variables occur in B
2. for an initial node corresponding to a clause $c \in B$, annotate with true
3. for a derived node (with the pivot variable x occurring in B), annotate with the conjunction of its parents' annotations
4. for a derived node (with the pivot variable x not occurring in B), annotate with the disjunction of its parents' annotations

Interpolation and SAT-Based MC

- keeps only one candidate invariant (Q)
- when a bad state is reachable from the over-approximation, the over-approximation is not refined
- instead, the over-approximation is discarded completely and the transition system is unrolled further

SAT-Based Model Checking without Unrolling

- without making copies of the transition relation
- computes over-approximation of the post-image of the set of reachable states
- maintains multiple candidate invariants

Frames and Invariants

- done by maintaining frames $-F_{0}, F_{1}, \ldots, F_{k}$ - which are step-wise assumptions (or over-approximations)
- the frames maintain the following invariants

1. $I_{0} \rightarrow F_{0}$
(F_{0} contains the initial set of states)
2. $F_{i} \rightarrow F_{i+1} \quad(0 \leq i<k)$ (frames are monotonic)
3. $F_{i} \rightarrow P \quad(0 \leq i \leq k)$
(none of the frames contain a bad, i.e. $\neg P$, state)
4. $F_{i} \wedge T \rightarrow F_{i+1}^{\prime} \quad(0 \leq i<k)$
(F_{i} over-approximates i-step reachability)

Inductive Reasoning

to prove that P is an invariant (that every reachable state satisfies P), it suffices to prove that

1. all initial states satisfy P

$$
\operatorname{init}(x) \rightarrow P(x)
$$

2. a P-state can only be followed by a P-state

$$
P(x) \wedge \operatorname{trans}\left(x, x^{\prime}\right) \rightarrow P\left(x^{\prime}\right)
$$

however, P itself may not be inductive; it may help to have a stronger assertion in that case

1. $\operatorname{init}(x) \rightarrow f(x)$
2. $f(x) \wedge \operatorname{trans}\left(x, x^{\prime}\right) \rightarrow f\left(x^{\prime}\right)$
3. $f(x) \rightarrow P(x)$
(initiation)
(consecution)
(safety)

Example

$$
\begin{aligned}
& x=1 \\
& y=1
\end{aligned}
$$

while (*)

$$
\mathrm{x}, \mathrm{y}=\mathrm{x}+1, \mathrm{y}+\mathrm{x}
$$

suppose we want to prove the property, P, that $y \geq 1$ is an invariant

Example

- $(y \geq 1)$ is not an inductive invariant (why? the consecution check fails)
- so, we must look for a strengthening of $(y \geq 1)$
- $(x \geq 0 \wedge y \geq 1)$ is an inductive invariant; but how do we obtain this?
- counterexample to induction (CTI) from the failed consecution check: $[x=-1, y=1]$
- the strengthening ($x \geq 0$) must eliminate the CTI
- $(x \geq 0)$ is an inductive invariant
- $(y \geq 1)$ is inductive relative to $(x \geq 0)$

$$
(x \geq 0) \wedge(y \geq 1) \wedge y^{\prime}=y+x \wedge x^{\prime}=x+1 \rightarrow\left(y^{\prime} \geq 1\right)
$$

- thus, an incremental proof is possible

Another example

$$
\begin{aligned}
& \mathrm{x}=1 ; \\
& \mathrm{y}=1 ;
\end{aligned}
$$

while(*)

$$
\mathrm{x}, \mathrm{y}=\mathrm{x}+\mathrm{y}, \mathrm{y}+\mathrm{x}
$$

suppose we want to prove the property, P, that $y \geq 1$ is an invariant

Another example

- as in case of previous example, $y \geq 1$ is an invariant but not inductive
- we get a CTI last like time: $[x=-1, y=1]$
- $(x \geq 0)$ eliminates the CTI but isn't inductive (unlike the last time)
- but it is inductive relative to the property

$$
(y \geq 1) \wedge(x \geq 0) \wedge y^{\prime}=y+x \wedge x^{\prime}=x+y \rightarrow\left(x^{\prime} \geq 0\right)
$$

- seemingly circular reasoning, but not actually so

$$
P \wedge \psi \wedge T \rightarrow \psi^{\prime} \quad \text { and } \quad \psi \wedge P \wedge T \rightarrow P^{\prime}
$$

together imply that $\psi \wedge P$ is an inductive invariant

- thus, an incremental proof is still possible (though it may not be possible in every case; exercise - construct an example where the entire inductive strengthening must be obtained at once)

Back to frames and invariants

- check that $I \rightarrow P$ (that none of the initial states are bad), and set F_{0} to I
- check $(I=) F_{0} \wedge T \rightarrow P^{\prime}$ (that bad is not 1-step reachable), and set F_{1} to P
- now, we check $F_{1} \wedge T \rightarrow P^{\prime}$
- if not, there must be a CTI $s \in F_{1}$ that can reach $\neg P$ in one step
- but $s \notin F_{0}$, else it would have been discovered earlier (while checking $F_{0} \wedge T \rightarrow P^{\prime}$)
- so, we check if s is reachable from F_{0} in one step $\left(F_{0} \wedge \neg s \wedge T \rightarrow \neg s^{\prime}\right)$
- if yes, then s has a predecessor $s_{\text {pre }}$ in F_{0} (we need to check if $s_{\text {pre }}$ is an initial state, or if it has a predecessor, and so on..)
- if not, then $F_{1}:=\left(F_{1} \wedge \neg s\right)$ [it may be better to generalize the CTI instead of just eliminating one state at a time]

IC3 on a safe example ${ }^{1}$

[^0]
IC3 on an unsafe example ${ }^{2}$

[^1]
Algorithm

procedure PDR (model M , property P)
if $\left(I_{0} \wedge \neg P\right)$ is SAT, return " P does not hold" $F_{0} \leftarrow I_{0} ; k \leftarrow 0 ;$
while true do

```
extendFrontier(M, k)
propagateClauses(M, k)
if F}\mp@subsup{F}{i}{}=\mp@subsup{F}{i+1}{}\mathrm{ for some i, return "P holds"
k\leftarrowk+1
```

end while
end procedure

Algorithm

procedure extendFrontier (M, k)
$F_{k+1} \leftarrow P$
while $F_{k} \wedge T \wedge \neg P^{\prime}$ is SAT do
$s^{\prime} \leftarrow$ state labelled with $\neg P$ extracted from the satisfying assignment $s \leftarrow$ predecessor of s^{\prime} extracted from the satisfying assignment removeCTI($M, s, k)$
end while

end procedure

Algorithm

procedure removeCTI (M, s, i)
if $I_{0} \wedge s$ is SAT, return " P does not hold"
while $F_{i} \wedge T \wedge \neg s \wedge s^{\prime}$ is SAT do

$$
\begin{aligned}
\text { for } j & \in[0, i] \\
F_{j} & \leftarrow F_{j} \wedge \neg s
\end{aligned}
$$

end for
$t \leftarrow$ predecessor of s extracted from the SAT witness
removeCTI $(M, t, i-1)$
end while
end procedure

Algorithm

procedure propagateClauses (M, k)

$$
\begin{aligned}
& \text { for } i \in[1, k] \\
& \text { for every clause } c \in F_{i} \\
& \text { if } F_{i} \wedge T \wedge \neg c^{\prime} \text { is UNSAT } \\
& \quad F_{i+1} \leftarrow F_{i+1} \wedge c \\
& \text { end if } \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

end procedure

Thank you!

[^0]: ${ }^{1}$ Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf

[^1]: ${ }^{2}$ Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf

