
COL750: Foundations of Automatic Verification

(Jan-May 2023)

Lectures 21 & 22 (IC3 – SAT-Based Model Checking without Unrolling)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Apr 3rd and 6th

1 / 19



Quick remarks about Interpolation

• recall the example from the last class (please see itp-notes.pdf, uploaded on Teams)

• the strongest interpolant of A is obtained from A by existentially quantifying over all local
variables in A

• thus, interpolation can be seen as an over-approximation of quantifier elimination

• in our example, we had obtained the interpolant c ∨ d , where the strongest interpolation
would have been c ⊕ d

2 / 19



Quick remarks about Interpolation

Here is a somewhat easier-to-remember method for annotating the resolution proof to obtain
an interpolant:

1. for an initial node corresponding to a clause c ∈ A, annotate with c ′ where c ′ is obtained
from c by keeping only those literals whose variables occur in B

2. for an initial node corresponding to a clause c ∈ B, annotate with true

3. for a derived node (with the pivot variable x occurring in B), annotate with the
conjunction of its parents’ annotations

4. for a derived node (with the pivot variable x not occurring in B), annotate with the
disjunction of its parents’ annotations

3 / 19



Interpolation and SAT-Based MC

• keeps only one candidate invariant (Q)

• when a bad state is reachable from the over-approximation, the over-approximation is not
refined

• instead, the over-approximation is discarded completely and the transition system is
unrolled further

4 / 19



SAT-Based Model Checking without Unrolling

• without making copies of the transition relation

• computes over-approximation of the post-image of the set of reachable states

• maintains multiple candidate invariants

5 / 19



Frames and Invariants

• done by maintaining frames – F0,F1, . . . ,Fk – which are step-wise assumptions (or
over-approximations)

• the frames maintain the following invariants

1. I0 → F0 (F0 contains the initial set of states)

2. Fi → Fi+1 (0 ≤ i < k) (frames are monotonic)

3. Fi → P (0 ≤ i ≤ k) (none of the frames contain a bad, i.e. ¬P, state)

4. Fi ∧ T → F ′
i+1 (0 ≤ i < k) (Fi over-approximates i-step reachability)

6 / 19



Inductive Reasoning

to prove that P is an invariant (that every reachable state satisfies P), it suffices to prove that

1. all initial states satisfy P
init(x)→ P(x) (initiation)

2. a P-state can only be followed by a P-state
P(x) ∧ trans(x , x ′)→ P(x ′) (consecution)

however, P itself may not be inductive; it may help to have a stronger assertion in that case

1. init(x)→ f (x) (initiation)

2. f (x) ∧ trans(x , x ′)→ f (x ′) (consecution)

3. f (x)→ P(x) (safety)

7 / 19



Example

x = 1;

y = 1;

while(*)

x, y = x + 1, y + x

suppose we want to prove the property, P, that y ≥ 1 is an invariant

8 / 19



Example

• (y ≥ 1) is not an inductive invariant (why? the consecution check fails)

• so, we must look for a strengthening of (y ≥ 1)

• (x ≥ 0 ∧ y ≥ 1) is an inductive invariant; but how do we obtain this?

• counterexample to induction (CTI) from the failed consecution check: [x = −1, y = 1]

• the strengthening (x ≥ 0) must eliminate the CTI

• (x ≥ 0) is an inductive invariant

• (y ≥ 1) is inductive relative to (x ≥ 0)

(x ≥ 0) ∧ (y ≥ 1) ∧ y ′ = y + x ∧ x ′ = x + 1 → (y ′ ≥ 1)

• thus, an incremental proof is possible

9 / 19



Another example

x = 1;

y = 1;

while(*)

x, y = x + y, y + x

suppose we want to prove the property, P, that y ≥ 1 is an invariant

10 / 19



Another example

• as in case of previous example, y ≥ 1 is an invariant but not inductive

• we get a CTI last like time: [x = −1, y = 1]

• (x ≥ 0) eliminates the CTI but isn’t inductive (unlike the last time)

• but it is inductive relative to the property

(y ≥ 1) ∧ (x ≥ 0) ∧ y ′ = y + x ∧ x ′ = x + y → (x ′ ≥ 0)

• seemingly circular reasoning, but not actually so

P ∧ ψ ∧ T → ψ′ and ψ ∧ P ∧ T → P ′

together imply that ψ ∧ P is an inductive invariant

• thus, an incremental proof is still possible (though it may not be possible in every case;
exercise – construct an example where the entire inductive strengthening must be
obtained at once)

11 / 19



Back to frames and invariants

• check that I → P (that none of the initial states are bad), and set F0 to I

• check (I =) F0 ∧ T → P ′ (that bad is not 1-step reachable), and set F1 to P

• now, we check F1 ∧ T → P ′

• if not, there must be a CTI s ∈ F1 that can reach ¬P in one step

• but s /∈ F0, else it would have been discovered earlier (while checking F0 ∧ T → P ′)

• so, we check if s is reachable from F0 in one step (F0 ∧ ¬s ∧ T → ¬s ′)

• if yes, then s has a predecessor spre in F0 (we need to check if spre is an initial state, or if
it has a predecessor, and so on..)

• if not, then F1 := (F1 ∧ ¬s) [it may be better to generalize the CTI instead of just
eliminating one state at a time]

12 / 19



IC3 on a safe example1

1Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf
13 / 19

https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf


IC3 on an unsafe example2

2Reference: https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf
14 / 19

https://theory.stanford.edu/~arbrad/papers/ic3_tut.pdf


Algorithm

procedure PDR (model M, property P)

if (I0 ∧ ¬P) is SAT, return ”P does not hold”
F0 ← I0; k ← 0;

while true do

extendFrontier(M, k)
propagateClauses(M, k)
if Fi = Fi+1 for some i , return ”P holds”
k ← k + 1

end while

end procedure
15 / 19



Algorithm

procedure extendFrontier (M, k)

Fk+1 ← P

while Fk ∧ T ∧ ¬P ′ is SAT do

s ′ ← state labelled with ¬P extracted from the satisfying assignment
s ← predecessor of s ′ extracted from the satisfying assignment
removeCTI (M, s, k)

end while

end procedure

16 / 19



Algorithm

procedure removeCTI (M, s, i)

if I0 ∧ s is SAT, return ”P does not hold”

while Fi ∧ T ∧ ¬s ∧ s ′ is SAT do

for j ∈ [0, i ]
Fj ← Fj ∧ ¬s

end for

t ← predecessor of s extracted from the SAT witness
removeCTI (M, t, i − 1)

end while

end procedure 17 / 19



Algorithm

procedure propagateClauses (M, k)

for i ∈ [1, k]
for every clause c ∈ Fi
if Fi ∧ T ∧ ¬c ′ is UNSAT
Fi+1 ← Fi+1 ∧ c

end if
end for

end for

end procedure

18 / 19



Thank you!

19 / 19


