
COL750: Foundations of Automatic Verification

(Jan-May 2023)

Lectures 23 & 24 (Hoare Logic, CBMC)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Apr 10th and 13th

1 / 37

Reasoning about code

• Assigning meanings to programs, Robert W. Floyd, 1967

• An Axiomatic Basis for Computer Programming, C. A. R. Hoare, 1969

2 / 37

A simple language

S ::= x = E | S1; S2 | if (B) then {S1} else {S2} | while (B) {S}

B ::= true | false | (not B) | (B1 and B2) | (B1 or B2) | (E1 < E2)

E ::= n | x | (−E) | (E1 + E2) | (E1 − E2) | (E1 ∗ E2)

where n denotes an integer, and x denotes a variable

3 / 37

Forward reasoning

{true}

x = 17

{x = 17}

y = 42

{x = 17 ∧ y = 42}

z = x + y

{x = 17 ∧ y = 42 ∧ z = 59}

• the assertions may accumulate a lot of irrelevant facts because we do not know what will
actually be useful for proving the property

4 / 37

Forward reasoning

{true}
x = 17

{x = 17}
y = 42

{x = 17 ∧ y = 42}
z = x + y

{x = 17 ∧ y = 42 ∧ z = 59}

• the assertions may accumulate a lot of irrelevant facts because we do not know what will
actually be useful for proving the property

5 / 37

Forward reasoning

{true}
x = 17

{x = 17}
y = 42

{x = 17 ∧ y = 42}
z = x + y

{x = 17 ∧ y = 42 ∧ z = 59}

• the assertions may accumulate a lot of irrelevant facts because we do not know what will
actually be useful for proving the property

6 / 37

Backward reasoning

{y + 1 > 0}

x = y

{x + 1 > 0}

x = x + 1

{x > 0}

• (y + 1 > 0) at the beginning of the execution ensures that (x > 0) holds at the end

• other preconditions also guarantee that the postcondition holds (e.g. y > 50 or y > 3)

• but (y > −1) is the weakest precondition

7 / 37

Backward reasoning

{y + 1 > 0}

x = y

{x + 1 > 0}
x = x + 1

{x > 0}

• (y + 1 > 0) at the beginning of the execution ensures that (x > 0) holds at the end

• other preconditions also guarantee that the postcondition holds (e.g. y > 50 or y > 3)

• but (y > −1) is the weakest precondition

8 / 37

Backward reasoning

{y + 1 > 0}
x = y

{x + 1 > 0}
x = x + 1

{x > 0}

• (y + 1 > 0) at the beginning of the execution ensures that (x > 0) holds at the end

• other preconditions also guarantee that the postcondition holds (e.g. y > 50 or y > 3)

• but (y > −1) is the weakest precondition

9 / 37

Backward reasoning

{y + 1 > 0}
x = y

{x + 1 > 0}
x = x + 1

{x > 0}

• (y + 1 > 0) at the beginning of the execution ensures that (x > 0) holds at the end

• other preconditions also guarantee that the postcondition holds (e.g. y > 50 or y > 3)

• but (y > −1) is the weakest precondition

10 / 37

Hoare triples

{P} S {Q}

precondition code postcondition

• if P holds true, and S is executed, and Q is guaranteed to be true afterwards, then the
Hoare triple {P} S {Q} is said to be valid

• {x 6= 0} y = x ∗ x {y > 0} is a valid Hoare triple

• {x ≥ 0} y = 2 ∗ x {y > 0} is an invalid Hoare triple

11 / 37

Hoare triples

{P} S {Q}
precondition code postcondition

• if P holds true, and S is executed, and Q is guaranteed to be true afterwards, then the
Hoare triple {P} S {Q} is said to be valid

• {x 6= 0} y = x ∗ x {y > 0} is a valid Hoare triple

• {x ≥ 0} y = 2 ∗ x {y > 0} is an invalid Hoare triple

12 / 37

Hoare triples

{P} S {Q}
precondition code postcondition

• if P holds true, and S is executed, and Q is guaranteed to be true afterwards, then the
Hoare triple {P} S {Q} is said to be valid

• {x 6= 0} y = x ∗ x {y > 0} is a valid Hoare triple

• {x ≥ 0} y = 2 ∗ x {y > 0} is an invalid Hoare triple

13 / 37

Partial and Total Correctness

• what is the code S does not terminate!

• {P} S {Q} is valid under partial correctness if from all states in P, when S is executed, if
S terminates then the resulting state will necessarily be in Q

• {P} S {Q} is valid under total correctness if from all states in P, when S is executed, S
is guaranteed to terminate and the resulting state will necessarily be in Q

• we will ignore the question of termination, and will restrict ourselves to partial correctness

14 / 37

Our agenda

is to prove correctness of programs, given their specification

y = 1;

z = 0;

while(z != x)

z = z + 1;

y = y * z;

{true} y = 1 {y = 1}
{y = 1} z = 0 {y = 1 ∧ z = 0}
{y = 1} z = 0 {y = z!}

{y = z!} while(..){...} {y = z! ∧ ¬(z 6= x)}
{y = z!} while(..){...} {y = x!}

we would like to prove that this implementation is partially correct wrt its specification (that
the program computes the factorial of x and stores it in y)

15 / 37

Our agenda

is to prove correctness of programs, given their specification

y = 1;

z = 0;

while(z != x)

z = z + 1;

y = y * z;

{true} y = 1 {y = 1}
{y = 1} z = 0 {y = 1 ∧ z = 0}
{y = 1} z = 0 {y = z!}

{y = z!} while(..){...} {y = z! ∧ ¬(z 6= x)}
{y = z!} while(..){...} {y = x!}

we would like to prove that this implementation is partially correct wrt its specification (that
the program computes the factorial of x and stores it in y)

16 / 37

Strongest postcondition

(x > 0)
y = x;

(y = x ∧ x > 0)

x = 3;

(y = x ∧ x > 0 ∧ x = 3)

sp(x := E ,P) = ∃x ′. [x ′/x]P ∧ x = [x ′/x]E

17 / 37

Strongest postcondition

(x > 0)
y = x; (y = x ∧ x > 0)
x = 3;

(y = x ∧ x > 0 ∧ x = 3)

sp(x := E ,P) = ∃x ′. [x ′/x]P ∧ x = [x ′/x]E

18 / 37

Strongest postcondition

(x > 0)
y = x; (y = x ∧ x > 0)
x = 3; (y = x ∧ x > 0 ∧ x = 3)

sp(x := E ,P) = ∃x ′. [x ′/x]P ∧ x = [x ′/x]E

19 / 37

Strongest postcondition

(x > 0)
y = x; (y = x ∧ x > 0)
x = 3; (y = x ∧ x > 0 ∧ x = 3)

sp(x := E ,P) = ∃x ′. [x ′/x]P ∧ x = [x ′/x]E

20 / 37

Strongest postcondition

sp(S ,P) is the strongest Q such that {P} S {Q} is valid

this means that if {P} S {Q} is valid, sp(S ,P)⇒ Q

sp(x := E ,P) = ∃x ′. [x ′/x]P ∧ x = [x ′/x]E

sp(S1;S2, P) = sp(S2, sp(S1,P))

sp(if (B) then S1 else S2,P) = sp(S1,P ∧ B) ∨ sp(S2,P ∧ ¬B)

21 / 37

Strongest postcondition

sp(S ,P) is the strongest Q such that {P} S {Q} is valid

this means that if {P} S {Q} is valid, sp(S ,P)⇒ Q

sp(x := E ,P) = ∃x ′. [x ′/x]P ∧ x = [x ′/x]E

sp(S1;S2, P) = sp(S2, sp(S1,P))

sp(if (B) then S1 else S2,P) = sp(S1,P ∧ B) ∨ sp(S2,P ∧ ¬B)

22 / 37

What about the loop?

the following holds, but doesn’t help!

sp(while(B) {S}, P) = sp(while(B) {S}, sp(S ,P ∧ B)) ∨ (P ∧ ¬B)

23 / 37

Weakest (liberal) precondition

wlp(S ,Q) is the weakest predicate P such that {P} S {Q} is valid (for partial correctness)

wp(S ,Q) is the weakest predicate P such that {P} S {Q} is valid (for total correctness)

this means that if {P} S {Q} is valid, P ⇒ wlp(S ,Q)

wlp(x := E ,Q) = Q[E/x]

wlp(S1; S2, Q) = wlp(S1, wlp(S2,Q))

wlp(if (B) then S1 else S2,Q) = (B ⇒ wlp(S1,Q)) ∧ (¬B ⇒ wlp(S2,Q))

wlp(if (B) then S1 else S2,Q) = (B ∧ wlp(S1,Q)) ∨ (¬B ∧ wlp(S2,Q))

24 / 37

Weakest (liberal) precondition

wlp(S ,Q) is the weakest predicate P such that {P} S {Q} is valid (for partial correctness)

wp(S ,Q) is the weakest predicate P such that {P} S {Q} is valid (for total correctness)

this means that if {P} S {Q} is valid, P ⇒ wlp(S ,Q)

wlp(x := E ,Q) = Q[E/x]

wlp(S1; S2, Q) = wlp(S1, wlp(S2,Q))

wlp(if (B) then S1 else S2,Q) = (B ⇒ wlp(S1,Q)) ∧ (¬B ⇒ wlp(S2,Q))

wlp(if (B) then S1 else S2,Q) = (B ∧ wlp(S1,Q)) ∨ (¬B ∧ wlp(S2,Q))

25 / 37

What about the loop?

the following holds, but doesn’t help!

wlp(while(B) {S}, Q) = if B then wlp(S , wlp(while(B) {S}, Q)) else Q

26 / 37

sp vs. wlp

• computing sp is like symbolically executing a program

• computing wlp is like attempting a backward proof

• sp may make it possible to simplify the current state, and may also help resolve branches

• wlp focuses on relevant facts

27 / 37

Proof rules for partial correctness

{φ} S1 {η} {η} S2 {ψ}
{φ} S1; S2 {ψ}

composition

{ψ}[E/x] x := E {ψ}
assignment

{φ ∧ B} S1 {ψ} {φ ∧ ¬B} S2 {ψ}
{φ} if (B) then S1 else S2 {ψ} if − then− else

{ψ ∧ B} S {ψ}
{ψ} while(B) {S1} {ψ ∧ ¬B}

partial− while

φ′ ⇒ φ {φ} S {ψ} ψ ⇒ ψ′

{φ′} S {ψ′}
implied

{B ⇒ ψ} assume(B) {ψ}
assume

{ψ} assume(B) {ψ ∧ B}
assume

28 / 37

Examples

for the program P, below, suppose we would like to prove that {>} P {y = x + 1}

a = x + 1;

if (a - 1 == 0)

y = 1;

else

y = a;

29 / 37

Example

in order to get {y = x + 1} at the end, we must get {y = x + 1} at the end of both the
conditional branches, so that we can apply the if-then-else proof rule

a = x + 1;

if (a - 1 == 0)

y = 1;

{y = x + 1}
else

y = a;

{y = x + 1}

{y = x + 1} if − then− else

30 / 37

Example

in order to get {y = x + 1} at the end of both the conditional branches, we need to use the
assignment rule in both the branches

a = x + 1;

if (a - 1 == 0)

{1 = x + 1}
y = 1;

{y = x + 1} assignment
else

{a = x + 1}
y = a;

{y = x + 1} assignment

{y = x + 1} if − then− else

31 / 37

Example

we can now compute the precondition which gives us the desired postconditions at the
beginning of both the branches

a = x + 1;

{(a− 1 = 0⇒ 1 = x + 1) ∧ (¬(a− 1 = 0)⇒ a = x + 1)}
if (a - 1 == 0)

{1 = x + 1} assume
y = 1;

{y = x + 1} assignment
else

{a = x + 1} assume
y = a;

{y = x + 1} assignment

{y = x + 1} if − then− else
32 / 37

Example

the condition before ’if’ must come from the assignment

{(x + 1− 1 = 0⇒ 1 = x + 1) ∧ (¬(x + 1− 1 = 0)⇒ x + 1 = x + 1)}
a = x + 1;

{(a− 1 = 0⇒ 1 = x + 1) ∧ (¬(a− 1 = 0)⇒ a = x + 1)} assignment
if (a - 1 == 0)

{1 = x + 1} assume
y = 1;

{y = x + 1} assignment
else

{a = x + 1} assume
y = a;

{y = x + 1} assignment

{y = x + 1} if − then− else
33 / 37

Example

the precondition that we got is a valid statement (is same as >)

{>}
{(x + 1− 1 = 0⇒ 1 = x + 1) ∧ (¬(x + 1− 1 = 0)⇒ x + 1 = x + 1)} implied
a = x + 1;

{(a− 1 = 0⇒ 1 = x + 1) ∧ (¬(a− 1 = 0)⇒ a = x + 1)} assignment
if (a - 1 == 0)

{1 = x + 1} assume
y = 1;

{y = x + 1} assignment
else

{a = x + 1} assume
y = a;

{y = x + 1} assignment

{y = x + 1} if − then− else34 / 37

Revisiting the factorial example

{>}
{1 = 0!} implied
y = 1;

{y = 0!} assignment
z = 0;

{y = z!} assignment
while(z != x)

{y = z! ∧ z 6= x} assume
{y .(z + 1) = (z + 1)!} implied
z = z + 1;

{y .z = z!} assignment
y = y * z;

{y = z!} assignment

{y = z! ∧ ¬(z 6= x)} partial− while
{y = x!} implied35 / 37

CBMC demo

Online on Teams (with recording)

36 / 37

Thank you!

37 / 37

