COL750: Foundations of Automatic Verification
(Jan-May 2023)

Lectures 23 & 24 (Hoare Logic, CBMC)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Apr 10th and 13th

Reasoning about code

® Assigning meanings to programs, Robert W. Floyd, 1967

® An Axiomatic Basis for Computer Programming, C. A. R. Hoare, 1969

A simple language

Su= x=E | 55 | if (B) then {51} else {S2} | while (B) {S}
B:= true | false | (not B) | (By and By) | (Bior By) | (E1 < E)
E:x= n| x| (-E)| (BB+E) | (E-E) | (*E)

where n denotes an integer, and x denotes a variable

Forward reasoning

Forward reasoning

{true}

x =17

{x =17}

y = 42

{x=17Ay =42}
zZ=x+y
{x=17TANy =42 Nz =159}

Forward reasoning

{true}
x = 17
{x =17}
y = 42

{x=17Ay =42}
z=3x+y
{x=17TANy =42z =159}

® the assertions may accumulate a lot of irrelevant facts because we do not know what will
actually be useful for proving the property

Backward reasoning

Backward reasoning

X =y
{x+1>0}
x=x +1

{x >0}

Backward reasoning

{y +1>0}
X=Yy

{x+1>0}
x=x+1

{x >0}

Backward reasoning

{y +1>0}
X=Yy

{x+1>0}
x=x+1

{x >0}

® (y +1 > 0) at the beginning of the execution ensures that (x > 0) holds at the end
® other preconditions also guarantee that the postcondition holds (e.g. y > 50 or y > 3)

® but (y > —1) is the weakest precondition

Hoare triples

{P} S {Q}

Hoare triples

{P} S {Q}

precondition code postcondition

Hoare triples

{P} S {Q}

precondition code postcondition

® if P holds true, and S is executed, and Q is guaranteed to be true afterwards, then the
Hoare triple {P} S {Q} is said to be valid

o {x#0} y=xxx {y >0} isa valid Hoare triple

e {x>0} y=2xx {y >0} isan invalid Hoare triple

Partial and Total Correctness

® what is the code S does not terminate!

e {P} S {Q} is valid under partial correctness if from all states in P, when S is executed, if
S terminates then the resulting state will necessarily be in @

e {P} S {Q} is valid under total correctness if from all states in P, when S is executed, S
is guaranteed to terminate and the resulting state will necessarily be in @

[J

we will ignore the question of termination, and will restrict ourselves to partial correctness

is to prove correctness of programs, given their specification

y =1
z = 0;

while(z !'= x)
z =z +1;
y=y*z

we would like to prove that this implementation is partially correct wrt its specification (that
the program computes the factorial of x and stores it in y)

is to prove correctness of programs, given their specification

y =1; {true} y=1 {r=1}
z = 0; {y =1} z=0 {y=1n1Az=0}
{y=13 z=0 {y =21}
while(z != x)
z =z + 1;
y =3 * z; {y =z!} while(..){...} {y=2! A =(z# x)}

{y =2z} Whi/e(:.){::.} {y =x!}

we would like to prove that this implementation is partially correct wrt its specification (that
the program computes the factorial of x and stores it in y)

Strongest postcondition

©<
o

Strongest postcondition

0
X; (y=xAx>0)
3.

©<
o

Strongest postcondition

0
X (y=xAx>0)
3 (y=xAx>0Ax=3)

©<
o

Strongest postcondition

0
X (y=xAx>0)
3 (y=xAx>0Ax=3)

©<
o

sp(x == E,P)= 3x". [xX'/x]P Ax = [x'/x]E

Strongest postcondition

sp(S, P) is the strongest Q such that {P} S {Q} is valid

this means that if {P} S {Q} is valid, sp(S,P) = Q

Strongest postcondition

sp(S, P) is the strongest Q such that {P} S {Q} is valid

this means that if {P} S {Q} is valid, sp(S,P) = Q

sp(x == E,P) = 3x". [X'/x]P Ax=[x'/x]E

sp(S1; 52, P) = sp(S2, sp(S1,P))

sp(if(B) then Sy else S5, P) = sp(S1,PAB) VvV sp(S2, PA-B)

What about the loop?

the following holds, but doesn’t help!

sp(while(B) {S}, P) = sp(while(B) {S}, sp(S,PAB)) Vv (PA-B)

Weakest (liberal) precondition

wlp(S, Q) is the weakest predicate P such that {P} S {Q} is valid (for partial correctness)
wp(S, Q) is the weakest predicate P such that {P} S {Q} is valid (for total correctness)

this means that if {P} S {Q} is valid, P = wlp(S, Q)

Weakest (liberal) precondition

wlp(S, Q) is the weakest predicate P such that {P} S {Q} is valid (for partial correctness)
wp(S, Q) is the weakest predicate P such that {P} S {Q} is valid (for total correctness)

this means that if {P} S {Q} is valid, P = wlp(S, Q)

wip(x == E,Q) = Q[E/x]
Wlp(sl; S5, Q) = wlp(51, Wlp(52, Q))
wlp(if(B) then Sy else S, Q) = (B = wlp(51,Q)) A (=B = wlp(S2, Q))

wlp(if(B) then Sy else S, Q) = (BAwlp(S51,Q)) V (=B Awlp(Sz, Q))

What about the loop?

the following holds, but doesn’t help!

wlp(while(B) {S}, Q) = if B then wip(S, wip(while(B) {S}, Q)) else Q

® computing sp is like symbolically executing a program
® computing wlp is like attempting a backward proof
® sp may make it possible to simplify the current state, and may also help resolve branches

® wlp focuses on relevant facts

Proof rules for partial correctness

{¢} S {nt {0} S {¥}
{¢} S1:5 {v}

composition

assignment

{UHE/X] x:=E {4}

fonB} S {y} {¢An-B} S {¢}
{¢} if(B) then Sy else S, {v}

if — then — else

{vAB} S {y}
{v} while(B) {S1} {¢A-B}

partial — while

¢=¢ {8} S {¥} ¢=v
{¢'} s {¥'}

implied

assume assume

{B =1} assume(B) {¢} {¢} assume(B) {y A B}

for the program P, below, suppose we would like to prove that {T} P {y =x+1}

a=x+
if (a
y =
else
y = a;

1;
1

b

in order to get {y = x + 1} at the end, we must get {y = x + 1} at the end of both the
conditional branches, so that we can apply the if-then-else proof rule

a=x+1;
if (a -1 ==0)

y=1

{y=x+1}
else

y = a;

{y=x+1}

{y=x+1} if — then — else

in order to get {y = x + 1} at the end of both the conditional branches, we need to use the
assignment rule in both the branches

a=x+1;
if (a -1 ==20)

{1=x+1}

y=1;

{y=x+1} assignment
else

{a=x+1}

y = a;

{y=x+1} assignment

{y=x+1} if — then — else

we can now compute the precondition which gives us the desired postconditions at the

beginning of both the branches

a=x+1;

{(a—1=0=1=x+1) A (n(a—1=0)=a=x+1)}
if (a-1==20)

{1=x+1}
y =1
{y=x+1}
else
{a=x+1}
y = a;
{y =x+1}

ly=x+1}

assume
assignment

assume
assignment

if — then — else

the condition before 'if" must come from the assignment

{x+1-1=0=1=x+1) A (-(x+1-1=0)=x+1=x+1)}

a=x+1;
{(a—1=0=1=x+1) A (n(a—1=0)=a=x+1)} assignment
if (a - 1 == 0)
{1=x+1} assume
y =1
{y=x+1} assignment
else
{a=x+1} assume
y = a;
{y=x+1} assignment

ly=x+1}

if — then — else

the precondition that we got is a valid statement (is same as T)

{T}
{x+1-1=0=1=x+1) A (-(x+1-1=0)=x+1=x+1)} implied
a=x+1;
{a—1=0=1=x+1) A (m(a—1=0)=a=x+1)} assignment
if (a-1==0)
{1=x+1} assume
y=1
{y=x+1} assignment
else
{a=x+1} assume
y = a
{y=x+1} assignment

{y =x+1} if — then — else

Revisiting the factorial example

{T}
{1=0!} implied
y=1
{y=01} assignment
z = 0;
{y=2} assignment
while(z !'= x)
{y=2!A"z#x} asstime
{y(z+1)=(z+ 1)} implied
z=2z+1;
{y.z=12z!} assignment
V=¥ o*z;
{y =2} assignment
{y=2'A=(z#x)} partial — while

{y=x1} implied

CBMC demo

Online on Teams (with recording)

Thank you!

