## COL750: Foundations of Automatic Verification (Jan-May 2023)

Lectures 23 \& 24 (Hoare Logic, CBMC)

Kumar Madhukar

## Reasoning about code

- Assigning meanings to programs, Robert W. Floyd, 1967
- An Axiomatic Basis for Computer Programming, C. A. R. Hoare, 1969


## A simple language

$$
\begin{aligned}
& S::=\quad x=E\left|S_{1} ; S_{2}\right| \text { if }(B) \text { then }\left\{S_{1}\right\} \text { else }\left\{S_{2}\right\} \mid \text { while }(B)\{S\} \\
& B::=\quad \text { true } \mid \text { false } \mid(\text { not } B) \mid\left(B_{1} \text { and } B_{2}\right) \mid\left(B_{1} \text { or } B_{2}\right) \mid\left(E_{1}<E_{2}\right) \\
& E::=n|x|(-E)\left|\left(E_{1}+E_{2}\right)\right|\left(E_{1}-E_{2}\right) \mid\left(E_{1} * E_{2}\right)
\end{aligned}
$$

where $n$ denotes an integer, and $x$ denotes a variable

## Forward reasoning

$$
\begin{aligned}
& x=17 \\
& y=42 \\
& z=x+y
\end{aligned}
$$

## Forward reasoning

$$
\begin{aligned}
& \{\text { true }\} \\
& \mathrm{x}=17 \\
& \{x=17\} \\
& \mathrm{y}=42 \\
& \{x=17 \wedge y=42\} \\
& \mathrm{z}=\mathrm{x}+\mathrm{y} \\
& \{x=17 \wedge y=42 \wedge z=59\}
\end{aligned}
$$

## Forward reasoning

$$
\begin{aligned}
& \{\text { true }\} \\
& \mathrm{x}=17 \\
& \{x=17\} \\
& \mathrm{y}=42 \\
& \{x=17 \wedge y=42\} \\
& \mathrm{z}=\mathrm{x}+\mathrm{y} \\
& \{x=17 \wedge y=42 \wedge z=59\}
\end{aligned}
$$

- the assertions may accumulate a lot of irrelevant facts because we do not know what will actually be useful for proving the property


## Backward reasoning

$$
\begin{aligned}
& x=y \\
& x=x+1 \\
& \{x>0\}
\end{aligned}
$$

## Backward reasoning

$$
\begin{aligned}
& \mathrm{x}=\mathrm{y} \\
& \{x+1>0\} \\
& \mathrm{x}=\mathrm{x}+1 \\
& \{x>0\}
\end{aligned}
$$

## Backward reasoning

$$
\begin{aligned}
& \{y+1>0\} \\
& \mathrm{x}=\mathrm{y} \\
& \{x+1>0\} \\
& \mathrm{x}=\mathrm{x}+1 \\
& \{x>0\}
\end{aligned}
$$

## Backward reasoning

$$
\begin{aligned}
& \{y+1>0\} \\
& \mathrm{x}=\mathrm{y} \\
& \{x+1>0\} \\
& \mathrm{x}=\mathrm{x}+1 \\
& \{x>0\}
\end{aligned}
$$

- $(y+1>0)$ at the beginning of the execution ensures that $(x>0)$ holds at the end
- other preconditions also guarantee that the postcondition holds (e.g. $y>50$ or $y>3$ )
- but $(y>-1)$ is the weakest precondition


## Hoare triples

$$
\begin{array}{lll}
\{P\} & S & \{Q\}
\end{array}
$$

## Hoare triples

$$
\begin{array}{ccc}
\{P\} & S & \{Q\} \\
\text { precondition } & \text { code } & \text { postcondition }
\end{array}
$$

## Hoare triples



- if $P$ holds true, and $S$ is executed, and $Q$ is guaranteed to be true afterwards, then the Hoare triple $\{P\} S\{Q\}$ is said to be valid
- $\{x \neq 0\} \quad y=x * x\{y>0\}$ is a valid Hoare triple
- $\{x \geq 0\} y=2 * x\{y>0\} \quad$ is an invalid Hoare triple


## Partial and Total Correctness

- what is the code $S$ does not terminate!
- $\{P\} S\{Q\}$ is valid under partial correctness if from all states in $P$, when $S$ is executed, if $S$ terminates then the resulting state will necessarily be in $Q$
- $\{P\} S\{Q\}$ is valid under total correctness if from all states in $P$, when $S$ is executed, $S$ is guaranteed to terminate and the resulting state will necessarily be in $Q$
- we will ignore the question of termination, and will restrict ourselves to partial correctness


## Our agenda

is to prove correctness of programs, given their specification

$$
\begin{aligned}
& \begin{array}{l}
y=1 ; \\
z=0 ;
\end{array} \\
& \text { while }(z \quad!=x) \\
& z=z+1 ; \\
& y=y * z
\end{aligned}
$$

we would like to prove that this implementation is partially correct wrt its specification (that the program computes the factorial of $x$ and stores it in $y$ )

## Our agenda

is to prove correctness of programs, given their specification

$$
\begin{aligned}
& y=1 ; \\
& z=0 ; \\
& \text { while }(z!=x) \\
& \quad \begin{array}{l}
z=z+1 ; \\
y=y * z
\end{array}
\end{aligned}
$$

$$
\begin{array}{lll}
\{\text { true }\} & y=1 & \{y=1\} \\
\{y=1\} & z=0 & \{y=1 \wedge z=0\} \\
\{y=1\} & z=0 & \{y=z!\}
\end{array}
$$

$$
\begin{aligned}
& \{y=z!\} \text { while }(. .)\{\ldots\} \quad\{y=z!\wedge \neg(z \neq x)\} \\
& \{y=z!\} \text { while(.. }\{\ldots\} \quad\{y=x!\}
\end{aligned}
$$

we would like to prove that this implementation is partially correct wrt its specification (that the program computes the factorial of $x$ and stores it in $y$ )

## Strongest postcondition

$$
\begin{aligned}
& (x>0) \\
& y=x ; \\
& x=3 ;
\end{aligned}
$$

## Strongest postcondition

$$
\begin{aligned}
& (x>0) \\
& y=x ; \\
& x=3 ;
\end{aligned} \quad(y=x \wedge x>0)
$$

## Strongest postcondition

$$
\begin{array}{ll}
(x>0) & \\
\mathrm{y}=\mathrm{x} ; & (y=x \wedge x>0) \\
\mathrm{x}=3 ; & (y=x \wedge x>0 \wedge x=3)
\end{array}
$$

## Strongest postcondition

$$
\begin{array}{ll}
(x>0) & \\
\mathrm{y}=\mathrm{x} ; & (y=x \wedge x>0) \\
\mathrm{x}=3 ; & (y=x \wedge x>0 \wedge x=3) \\
\mathrm{sp}(x:=E, P)= & \exists x^{\prime} \cdot\left[x^{\prime} / x\right] P \wedge x=\left[x^{\prime} / x\right] E
\end{array}
$$

## Strongest postcondition

$\operatorname{sp}(S, P)$ is the strongest $Q$ such that $\{P\} S\{Q\}$ is valid
this means that if $\{P\} S\{Q\}$ is valid, $\operatorname{sp}(S, P) \Rightarrow Q$

## Strongest postcondition

$\operatorname{sp}(S, P)$ is the strongest $Q$ such that $\{P\} S\{Q\}$ is valid this means that if $\{P\} S\{Q\}$ is valid, $\operatorname{sp}(S, P) \Rightarrow Q$

$$
\begin{aligned}
& \operatorname{sp}(x:=E, P)=\exists x^{\prime} \cdot\left[x^{\prime} / x\right] P \wedge x=\left[x^{\prime} / x\right] E \\
& \operatorname{sp}\left(S_{1} ; S_{2}, P\right)=\operatorname{sp}\left(S_{2}, \operatorname{sp}\left(S_{1}, P\right)\right) \\
& \operatorname{sp}\left(i f(B) \text { then } S_{1} \text { else } S_{2}, P\right)=\operatorname{sp}\left(S_{1}, P \wedge B\right) \vee \operatorname{sp}\left(S_{2}, P \wedge \neg B\right)
\end{aligned}
$$

## What about the loop?

the following holds, but doesn't help!
$\operatorname{sp}(w h i l e(B)\{S\}, P)=\operatorname{sp}(w h i l e(B)\{S\}, \quad \operatorname{sp}(S, P \wedge B)) \vee(P \wedge \neg B)$

## Weakest (liberal) precondition

${ }^{w} \operatorname{lp}(S, Q)$ is the weakest predicate $P$ such that $\{P\} S\{Q\}$ is valid (for partial correctness)
${ }_{\mathrm{wp}}(S, Q)$ is the weakest predicate $P$ such that $\{P\} S\{Q\}$ is valid (for total correctness)
this means that if $\{P\} S\{Q\}$ is valid, $P \Rightarrow w \ln (S, Q)$

## Weakest (liberal) precondition

wlp $(S, Q)$ is the weakest predicate $P$ such that $\{P\} S\{Q\}$ is valid (for partial correctness)
${ }^{w p}(S, Q)$ is the weakest predicate $P$ such that $\{P\} S\{Q\}$ is valid (for total correctness)
this means that if $\{P\} S\{Q\}$ is valid, $P \Rightarrow w \ln (S, Q)$

$$
\begin{aligned}
& \mathrm{wlp}(x:=E, Q)=Q[E / x] \\
& \mathrm{wlp}\left(S_{1} ; S_{2}, Q\right)=\mathrm{wlp}\left(S_{1}, \mathrm{wlp}\left(S_{2}, Q\right)\right) \\
& \mathrm{wlp}\left(i f(B) \text { then } S_{1} \text { else } S_{2}, Q\right)=\left(B \Rightarrow \mathrm{wlp}\left(S_{1}, Q\right)\right) \wedge\left(\neg B \Rightarrow w \operatorname{lp}\left(S_{2}, Q\right)\right) \\
& \mathrm{wlp}\left(i f(B) \text { then } S_{1} \text { else } S_{2}, Q\right)=\left(B \wedge w \operatorname{lp}\left(S_{1}, Q\right)\right) \vee\left(\neg B \wedge w \operatorname{lp}\left(S_{2}, Q\right)\right)
\end{aligned}
$$

## What about the loop?

the following holds, but doesn't help!
$\mathrm{wlp}($ while $(B)\{S\}, Q)=$ if $B$ then $\operatorname{wlp}(S, \quad w \operatorname{lp}(w h i l e(B)\{S\}, Q))$ else $Q$

- computing $s p$ is like symbolically executing a program
- computing wlp is like attempting a backward proof
- sp may make it possible to simplify the current state, and may also help resolve branches
- wlp focuses on relevant facts


## Proof rules for partial correctness

$$
\overline{\{B \Rightarrow \psi\} \quad \operatorname{assume}(B) \quad\{\psi\}} \text { assume } \quad \overline{\{\psi\}} \quad \overline{\operatorname{assume}(B)} \quad\{\psi \wedge B\}
$$

$$
\begin{aligned}
& \frac{\{\phi\} \quad S_{1}\{\eta\} \quad\{\eta\} \quad S_{2}\{\psi\}}{\{\phi\} \quad S_{1} ; S_{2}\{\psi\}} \text { composition } \\
& \overline{\{\psi\}[E / x] \quad x:=E \quad\{\psi\}} \text { assignment } \\
& \begin{array}{cllll}
\{\phi \wedge B\} & S_{1} \quad\{\psi\} & \{\phi \wedge \neg B\} & S_{2} \quad\{\psi\} \\
\{\phi\} & i f(B) \text { then } S_{1} \text { else } S_{2} & \{\psi\} & \text { if }- \text { then }- \text { else }
\end{array} \\
& \frac{\{\psi \wedge B\} \quad S \quad\{\psi\}}{\{\psi\} \quad \text { while }(B)\left\{S_{1}\right\} \quad\{\psi \wedge \neg B\}} \text { partial - while } \\
& \begin{array}{rccl}
\phi^{\prime} \Rightarrow \phi \quad & \{\phi\} & S\{\psi\} & \psi \Rightarrow \psi^{\prime} \\
\left\{\phi^{\prime}\right\} & S\left\{\psi^{\prime}\right\}
\end{array} \text { implied }
\end{aligned}
$$

## Examples

for the program $P$, below, suppose we would like to prove that $\quad\{T\} P\{y=x+1\}$

$$
\begin{aligned}
& a=x+1 ; \\
& \text { if }(a-1==0) \\
& y=1 ; \\
& \text { else } \\
& \qquad y=a
\end{aligned}
$$

## Example

in order to get $\{y=x+1\}$ at the end, we must get $\{y=x+1\}$ at the end of both the conditional branches, so that we can apply the if-then-else proof rule

$$
\begin{aligned}
& a=x+1 ; \\
& \text { if } \quad \begin{array}{l}
(a-1==0) \\
y=1 ;
\end{array} \\
& \{y=x+1\} \\
& \text { else } \\
& \qquad \begin{array}{l}
y=a ; \\
\{y=x+1\}
\end{array} \\
& \{y=x+1\}
\end{aligned}
$$

if - then - else

## Example

in order to get $\{y=x+1\}$ at the end of both the conditional branches, we need to use the assignment rule in both the branches

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}+1 ; \\
& \text { if } \begin{array}{l}
(\mathrm{a}-1==0) \\
\{1=x+1\} \\
\mathrm{y}=1 ; \\
\{y=x+1\} \\
\text { else } \\
\left\{\begin{array}{c}
\{a=x+1\} \\
\mathrm{y}=\mathrm{a}
\end{array}\right. \\
\{y=x+1\}
\end{array}
\end{aligned}
$$

assignment
$\{y=x+1\}$
if - then - else

## Example

we can now compute the precondition which gives us the desired postconditions at the beginning of both the branches

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}+1 ; \\
& \{(a-1=0 \Rightarrow 1=x+1) \wedge(\neg(a-1=0) \Rightarrow a=x+1)\} \\
& \text { if } \quad(\mathrm{a}-1==0) \\
& \quad\{1=x+1\} \\
& \quad \mathrm{y}=1 ; \\
& \quad\{y=x+1\} \\
& \text { else } \\
& \quad\{a=x+1\} \\
& \quad \begin{array}{l}
\mathrm{y}=\mathrm{a} ; \\
\{y=x+1\}
\end{array} \\
& \{y=x+1\}
\end{aligned}
$$

## Example

the condition before 'if' must come from the assignment

```
{(x+1-1=0=>1=x+1)\wedge(\neg(x+1-1=0)=>x+1=x+1)}
a = x + 1;
{(a-1=0=>1=x+1)\wedge(\neg(a-1=0)=>a=x+1)}
if (a - 1 == 0)
    {1=x+1}
        y = 1;
        {y=x+1}
else
    {a=x+1}
        y = a;
        {y=x+1}
{y=x+1}
```

assignment
assume
assignment
assume
assignment
$\{y=x+1\}$

## Example

the precondition that we got is a valid statement (is same as $T$ )

$$
\begin{aligned}
& \{T\} \\
& \{(x+1-1=0 \Rightarrow 1=x+1) \wedge(\neg(x+1-1=0) \Rightarrow x+1=x+1)\} \quad \text { implied } \\
& \mathrm{a}=\mathrm{x}+1 \text {; } \\
& \{(a-1=0 \Rightarrow 1=x+1) \wedge(\neg(a-1=0) \Rightarrow a=x+1)\} \\
& \text { if (a - } 1==0 \text { ) } \\
& \{1=x+1\} \\
& \text { y = 1; } \\
& \{y=x+1\} \\
& \text { else } \\
& \{a=x+1\} \\
& \text { y = a; } \\
& \{y=x+1\} \\
& \{y=x+1\} \\
& \text { if - then - else }
\end{aligned}
$$

## Revisiting the factorial example

$$
\begin{aligned}
& \{\top\} \\
& \{1=0!\} \\
& y=1 ; \\
& \{y=0!\} \\
& z=0 ; \\
& \{y=z!\} \\
& \text { while }(z \quad!=\mathrm{x}) \\
& \quad\{y=z!\wedge z \neq x\} \\
& \{y \cdot(z+1)=(z+1)!\} \\
& \quad z=\mathrm{z}+1 ; \\
& \quad\{y . z=z!\} \\
& \quad \mathrm{y}=\mathrm{y} * \mathrm{z} ; \\
& \{y=z!\} \\
& \{y=z!\wedge \neg(z \neq x)\}
\end{aligned}
$$

implied
assume
implied
assignment
assignment
partial - while implied

## CBMC demo

Online on Teams (with recording)

Thank you!

