
COL750: Foundations of Automatic Verification

(Jan-May 2023)

Lectures 03 & 04 (LTL and NuSMV)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Jan 12th and 16th

1 / 29



Linear-time Temporal Logic

• has connectives that allow us to refer to the future

• models time as a sequence of states, extending infinitely into the future

• sequence of states is called a computational path

• since the future is not determined, we consider all possible paths

2 / 29



Syntax

See Sect. 3.2.1 of the Logic in Computer Science book by Huth and Ryan.

3 / 29



Syntax

• Well-formed formulas

• Binding priorities

• Parse trees

• Subformulas of an LTL formula

• Subformulas of p U (q U r)

4 / 29



Syntax

• Well-formed formulas

• Binding priorities

• Parse trees

• Subformulas of an LTL formula

• Subformulas of p U (q U r)

5 / 29



Semantics

6 / 29



Semantics

7 / 29



Semantics

Let M = (S,→,L) be a model and π = s1 → s2 → . . . be a path in M.

Whether π satisfies an LTL formula is defined by the satisfaction relation � as follows:

8 / 29



Semantics

Let M = (S,→,L) be a model and π = s1 → s2 → . . . be a path in M.

Whether π satisfies an LTL formula is defined by the satisfaction relation � as follows:

9 / 29



Semantics

Let M = (S,→,L) be a model and π = s1 → s2 → . . . be a path in M.

Whether π satisfies an LTL formula is defined by the satisfaction relation � as follows:

10 / 29



Example specifications

• it is impossible to get to a state where started holds, but ready does not hold

11 / 29



Example specifications

• for any state, if a request occurs, then it will eventually be granted

12 / 29



Example specifications

• a certain process is enabled infinitely often on every computational path

13 / 29



Example specifications

• on all paths, a certain process will eventually become deadlocked

14 / 29



Example specifications

• if a process is enabled infinitely often, then it runs infinitely often

15 / 29



Example specifications

• an upward travelling lift at the second floor does not change its direction when it has
passengers wishing to go to the fifth floor

16 / 29



Example specifications

• the lift can remain idle on the third floor with its doors closed

17 / 29



Equivalences between LTL formulas

See Sect. 3.2.4 and Sect. 3.2.5 of the Logic in Computer Science book by Huth and Ryan.

18 / 29



Verification using LTL – Example (Mutual Exclusion)

• when concurrent processes share a resource, it may be necessary to ensure that they do
not have access to it at the same time

• identify certain critical sections of each process’ code

• ensure that only one process is in its critical section at a time

• how do we ensure this?

• protocol for determining which process is allowed to enter its critical section

• verify that the protocol satisfies the expected properties

19 / 29



Verification using LTL – Example (Mutual Exclusion)

• when concurrent processes share a resource, it may be necessary to ensure that they do
not have access to it at the same time

• identify certain critical sections of each process’ code

• ensure that only one process is in its critical section at a time

• how do we ensure this?

• protocol for determining which process is allowed to enter its critical section

• verify that the protocol satisfies the expected properties

20 / 29



Expected properties

• Safety – only one process in its critical section at a time

• Liveness – whenever any process requests access to its critical section, it will eventually be
granted the access

• Non-blocking – a process can always request to enter its critical section

• No strict sequencing – processes need not enter their critical section in strict sequence

21 / 29



Expected properties

• Safety – only one process in its critical section at a time

• Liveness – whenever any process requests access to its critical section, it will eventually be
granted the access

• Non-blocking – a process can always request to enter its critical section

• No strict sequencing – processes need not enter their critical section in strict sequence

22 / 29



Expected properties

• Safety – only one process in its critical section at a time

• Liveness – whenever any process requests access to its critical section, it will eventually be
granted the access

• Non-blocking – a process can always request to enter its critical section

• No strict sequencing – processes need not enter their critical section in strict sequence

23 / 29



Expected properties

• Safety – only one process in its critical section at a time

• Liveness – whenever any process requests access to its critical section, it will eventually be
granted the access

• Non-blocking – a process can always request to enter its critical section

• No strict sequencing – processes need not enter their critical section in strict sequence

24 / 29



Mutex protocol

25 / 29



Expected properties

• Safety – only one process in its critical section at a time
G¬(c1 ∧ c2)

• Liveness – whenever any process requests access to its critical section, it will eventually be
granted the access
G(t1 → Fc1)
G(t2 → Fc2)

• Non-blocking – a process can always request to enter its critical section

• No strict sequencing – processes need not enter their critical section in strict sequence
G(c1 → c1 W (¬c1 ∧ ¬c1 W c2))

26 / 29



Mutex protocol revised

27 / 29



NuSMV

Tool – https://nusmv.fbk.eu/

Examples done in class – https://kumarmadhukar.github.io/courses/

verification-holi23/resources/nusmv-examples.tar.gz

28 / 29

https://nusmv.fbk.eu/
https://kumarmadhukar.github.io/courses/verification-holi23/resources/nusmv-examples.tar.gz
https://kumarmadhukar.github.io/courses/verification-holi23/resources/nusmv-examples.tar.gz


Thank you!

29 / 29


