COL750: Foundations of Automatic Verification
(Jan-May 2023)

Lectures 03 & 04 (LTL and NuSMV)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Jan 12th and 16th

Linear-time Temporal Logic

has connectives that allow us to refer to the future

models time as a sequence of states, extending infinitely into the future

® sequence of states is called a computational path

since the future is not determined, we consider all possible paths

See Sect. 3.2.1 of the Logic in Computer Science book by Huth and Ryan.

Well-formed formulas

Binding priorities

® Parse trees

Subformulas of an LTL formula

Well-formed formulas

Binding priorities

® Parse trees

Subformulas of an LTL formula

Subformulas of p U (q U r)

Let M = (8,—,£L) be a model and m = s — s, — ... be a path in M.

Whether 7 satisfies an LTL formula is defined by the satisfaction relation F as follows:

TET

T L

mEpiff pe L(s)
TE-piff 1 ¢

TE Oy Aoy iff mF)y and mF e

~

TEM Vo iff TE 01 or mE @9

TE @1 — o9 iff mE ¢y whenever mE ¢4
TEXoiff 72 F o

rEGoiff, foralli > 1, 7° E ¢

Let M = (8,—,£L) be a model and m = s — s, — ... be a path in M.
Whether 7 satisfies an LTL formula is defined by the satisfaction relation F as follows:
7 E F ¢ iff there is some 7 > 1 such that 7t E ¢

T ¢ U iff there is some 7 > 1 such that 7 F ¢ and for all j =1...., i—1
we have 71 E ¢

Let M = (8,—,£L) be a model and m = s — s, — ... be a path in M.

Whether 7 satisfies an LTL formula is defined by the satisfaction relation F as follows:

7 ¢ W iff either there is some i > 1 such that 7° E ¢ and for all j =
1..... i — 1 we have 77 E ¢&: or for all k > 1 we have 7% E &
7 E o R v iff either there is some i > 1 such that 7' E ¢ and forall j =1,...,

we have 77 E ¢, or for all k > 1 we have 7% E 4.

Example specifications

® it is impossible to get to a state where started holds, but ready does not hold

Example specifications

® for any state, if a request occurs, then it will eventually be granted

Example specifications

® a certain process is enabled infinitely often on every computational path

Example specifications

® on all paths, a certain process will eventually become deadlocked

Example specifications

® if a process is enabled infinitely often, then it runs infinitely often

Example specifications

® an upward travelling lift at the second floor does not change its direction when it has
passengers wishing to go to the fifth floor

Example specifications

® the lift can remain idle on the third floor with its doors closed

Equivalences between LTL formulas

See Sect. 3.2.4 and Sect. 3.2.5 of the Logic in Computer Science book by Huth and Ryan.

Verification using LTL — Example (Mutual Exclusion)

® when concurrent processes share a resource, it may be necessary to ensure that they do
not have access to it at the same time

® identify certain critical sections of each process’ code

® ensure that only one process is in its critical section at a time

Verification using LTL — Example (Mutual Exclusion)

® when concurrent processes share a resource, it may be necessary to ensure that they do
not have access to it at the same time

® identify certain critical sections of each process’ code

® ensure that only one process is in its critical section at a time

® how do we ensure this?

® protocol for determining which process is allowed to enter its critical section

o verify that the protocol satisfies the expected properties

Expected properties

® Safety — only one process in its critical section at a time

Expected properties

® Safety — only one process in its critical section at a time

® | iveness — whenever any process requests access to its critical section, it will eventually be
granted the access

Expected properties

® Safety — only one process in its critical section at a time

® | iveness — whenever any process requests access to its critical section, it will eventually be
granted the access

® Non-blocking — a process can always request to enter its critical section

Expected properties

Safety — only one process in its critical section at a time

® | iveness — whenever any process requests access to its critical section, it will eventually be
granted the access

Non-blocking — a process can always request to enter its critical section

® No strict sequencing — processes need not enter their critical section in strict sequence

Mutex protocol

.

eyl

”l”zl
/51/ \’/

tlmw i nlfz‘

Expected properties

Safety — only one process in its critical section at a time
G—(c1 A)

® | iveness — whenever any process requests access to its critical section, it will eventually be
granted the access
G(t; — Fap)
G(to = Fo)

® Non-blocking — a process can always request to enter its critical section

® No strict sequencing — processes need not enter their critical section in strict sequence
G(ci > W (g A—cp W o))

Mutex protocol revised

o T
[T1n2) ~] '”17‘): ‘
| AN \ / N |
. ‘ Sz / So | s6
2 ~ \ [/ ~
:/(‘1312;\ tily (f1t2) (11C2)

NuSMV

Tool — https://nusmv.fbk.eu/

Examples done in class — https://kumarmadhukar.github.io/courses/
verification-holi23/resources/nusmv-examples.tar.gz

https://nusmv.fbk.eu/
https://kumarmadhukar.github.io/courses/verification-holi23/resources/nusmv-examples.tar.gz
https://kumarmadhukar.github.io/courses/verification-holi23/resources/nusmv-examples.tar.gz

Thank you!

