COL750: Foundations of Automatic Verification
(Jan-May 2023)

Lectures 09 & 10 (CTL Model Checking [with fairness| using BDDs)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Feb 2nd and 13th

Existential Normal Form for CTL

o pi=true | pi| pr1 N2 | ¢ | EXP | E(01Un) | EGo

® For every CTL formula there exists an equivalent CTL formula in ENF

® Correctness and Termination

e Efficiency

CTL Model Checking using BDDs

® encoding subsets of a finite set as OBDDs (characteristic function, using a “long enough”
vector of booleans)

e for a set of states of M = (S, —, L), there is a natural encoding (given by the labelling
function)

Representing subsets of states

set of representation by representation by

states boolean values boolean function

0 0

{s0} (1.0) ry - Ty

[s1} (0.1) 7772

{s2} (0.0) E)

{s0,51} (1,0), (0,1) R R)

{SQ.SQ} (10) (O 0) T T2+ T T2

{s1,52} (0,1). (0.0) Ty wy+ T T

S (1,0), (0, 1), (0.0) 1 -T2+ T 10+ T T2

Representing the transition relation

® truth table with primed variables for next states

Representing the transition relation

® truth table with primed variables for next states

® interleaving unprimed and primed variables is usually more efficient

Representing the transition relation

® truth table with primed variables for next states
® interleaving unprimed and primed variables is usually more efficient

® implementation of preg

Representing the transition relation

truth table with primed variables for next states
® interleaving unprimed and primed variables is usually more efficient
® implementation of preg

® not very useful to do this via truth tables

Synthesizing OBDDs from (compact) system descriptions

Exercise: Encode the model shown a couple of slides back in SMV, and extract the BDD for
the transition relation from the SMV code (without creating a truth table explictly).

CTL Model Checking with Fairness

recall the mutex example, where processes were allowed to stay in their critical section as
long as required

this can lead to violation of the liveness constraint AG (t; — AF ¢1)

we would like to ignore such paths (assuming that the processes would eventually exit
from its critical section after some finite time)

In LTL, we could handle this by saying GF —¢; — ¢

CTL Model Checking with Fairness

® CTL does not allow us to pick fair paths
® NuSMYV allowed us to write FAIRNESS constraints

® NuSMV can handle only simple fairness constraints (of the form: ¢ is true infinitely
often)

® fairness constraints may be more complex (e.g. if ¢ is true infinitely often, then v is true
infinitely often)

Handling Simple Fairness

Let C := {¢1,v2,...,%n} be n fairness constraints

® A computational path is called fair wrt these if every 1); is true infinitely often along that
path

Let Ac and E¢ denote the operators A and E restricted to fair paths

EcU, EcX, and EcG form an adequate set

We need to handle only EcG

Handing EcG

. qtatec; satisfying ¢

-

, 4 EoC o anﬁ Sb C\
- f; scé\

Thank you!

