
COL750: Foundations of Automatic Verification

(Jan-May 2023)

Lectures 13 & 14 (Transition Systems, Properties, Model Checking1)

Kumar Madhukar

madhukar@cse.iitd.ac.in

Feb 23rd and 27th

1examples used here are from Srivathsan’s slides on Model Checking
1 / 15



Recall

2 / 15



Transition System

3 / 15



Safety Property

• a property is a set of infinite words over the power-set of atomic propositions

• e.g. p1 is always true (denotes all those words where each letter is either {p1} or
{p1, p2})

• P is a safety property if there exists a set of bad-prefixes such that P is the set of all
words not starting with a bad-prefix

• e.g. if p1 is true, then p2 must be true in the next step (the set of bad-prefixes is all those
words that have the letter {p1} or {p1, p2} somewhere, but the immediate next letter is
neither {p2} nor {p1, p2})

4 / 15



Regular Safety Properties

• a safety property is called a regular safety property if the set of bad-prefixes is a regular
language (can be recognized by an NFA)

5 / 15



Regular Safety Properties

• not all safety properties are regular safety properties

• e.g. consider the property that at any point, the total number of occurrences of p1 so far
must exceed the total number of occurences of p2

• a bad-prefix is a word that has fewer p1’s than p2’s

• the set of bad-prefixes is not a regular language

6 / 15



Invariants

• properties of the form “φ is always true” (or, G φ)

• where φ is a boolean expression over the atomic propositions

• it is easy to see that invariants are regular safety properties

7 / 15



Checking properties in transition systems

• How can we check if a given transition system satisfies an invariant property?

• every reachable state must satisfy the property

• depth-first search

• it is useful to obtain a counterexample if the property is violated

• the dfs can also be modified to print the entire path to the violating state (instead of just
reporting the violating state)

• What about regular safety properties?

• take the synchronous product of the transition automaton and the bad-prefix automaton,
and check if it’s language is non-empty.

8 / 15



Checking regular safety properties

9 / 15



Transition System → Automaton

• move the labels from the states to all the outgoing transitions from that state

• make every state an accepting state

10 / 15



Transition System → Automaton

11 / 15



Emptiness check on Product automaton

12 / 15



Exercises from the last class

While proving that a language is Büchi-recognizable iff it is ω-regular, we had left the
following two claims as an exercise.

1. If U is regular, then Uω is Büchi-recognizable.

2. If U is regular, and L is Büchi-recognizable then UL is Büchi-recognizable.

We can show this by explicitly constructing an NBA using the NFA for U and the NBA for L.

Here’s the reference material (see slides 6–19) for this construction:
https://www.cmi.ac.in/~sri/Courses/NPTEL/ModelChecking/Slides/Unit6-Module2.pdf

13 / 15

https://www.cmi.ac.in/~sri/Courses/NPTEL/ModelChecking/Slides/Unit6-Module2.pdf


LTL Model Checking

Here’s the reference material for this part:
https://kumarmadhukar.github.io/courses/verification-holi23/resources/ltl-mc-srivathsan.pdf

14 / 15

https://kumarmadhukar.github.io/courses/verification-holi23/resources/ltl-mc-srivathsan.pdf


Thank you!

15 / 15


