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Abstract. One of the most successful techniques for refuting safety
properties is to find counterexamples by bounded model checking. How-
ever, for large programs, bounded model checking instances often exceed
the limits of resources available. Generating such counterexamples in a
modular way could speed up refutation, but it is challenging because of
the inherently non-compositional nature of these counterexamples. We
start from the monolithic safety verification problem and present a step-
by-step derivation of the compositional safety refutation problem. We
give three algorithms that solve this problem, discuss their properties
with respect to efficiency and completeness, and evaluate them experi-
mentally.

1 Introduction

Divide-and-conquer approaches are considered to be the blue print solution to
scale algorithms to large problems. Compositionality of proofs is the enabler of
a map-reduce approach to verification. Compositional verification approaches
based on contracts and summaries have been shown to tremendously increase
scalability and productivity in real-world formal verification [2,12,19,27].

But what about refutation? Unlike verification, refutation algorithms are
usually based on finding a violating execution trace, which seems to be inher-
ently non-compositional. Consequently, the study of the compositional refutation
problem is an under-explored area of research. Yet, solutions to this problem
have significant impact on other research problems. As a motivation, we give
here two algorithmic approaches in verification and testing that will be enabled
by efficient compositional refutation algorithms:

– Property-guided abstraction refinement algorithms like CEGAR [6] need to
decide whether counterexamples that are found in the abstraction are spuri-
ous or true counterexamples. The lack of compositional refutation techniques
forces these algorithms to operate in a monolithic manner and is therefore an
obstacle to scaling them to large programs.

– Automated test generation techniques based on Bounded Model Checking
are successfully used in various industries to generate unit tests (e.g. [25]).
However, they do not sufficiently scale to accomplish the task of generating
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integration tests. Compositional refutation techniques achieve exactly this
goal: they efficiently produce refutations (from which test vectors can be
derived) on unit (module) level and enable their composition in order to
obtain system level refutations, i.e. integration tests.

This paper is a first step in this direction and lays the base for a more systematic
study of the problem domain.

Contributions. We summarise the contributions of the paper as follows:

– In order to place the problem in a wider context, we give an informal overview
on how completeness relates to problem decomposition in safety refutation
and verification (Sect. 3).

– We formalise the safety refutation problem in horizontal decompositions, e.g.
procedure-modular decompositions, and characterise the compositional com-
pleteness guarantees of various algorithmic approaches (Sect. 4).

– We describe three refutation approaches with different degrees of complete-
ness (Sect. 5) and give experimental results on C benchmarks, comparing their
completeness and efficiency (Sect. 6).

2 Preliminaries

Program Model and Notation. We assume that programs are given in terms of
acyclic1 call graphs, where individual procedures f are given in terms of deter-
ministic, symbolic input/output transition systems. F is the set of all procedures
in the program. Since the handling of loops is orthogonal to the compositional
aspect, we consider only loop-free procedures (respectively bounded unwindings
of loops) in this paper. Thus, we simply denote the input/output relation of
a procedure f as Tf (x in,x out). Inputs x in are procedure parameters, global
variables, and memory objects that are read by f . Outputs x out are return
values, and potential side effects such as global variables and memory objects
written by f . Boolean guard variables (g) are used to model the control flow.
Non-deterministic choices are encoded by additional input variables.

The relations Tf are given as first-order logic formulae over bitvectors and
arrays, resulting from the logical encoding of the program semantics. Figure 1
gives an example of the encoding of a program into such formulae using the
loop-free notation. The inputs x in of foo are (y, g6) and the outputs x out consist
of (r, g7) where r is the return value. In addition to the inputs and outputs we
need boolean guard variables gin, gout (here g6, g7) that are true if the entry
and, respectively, exit of the procedure can be reached. They are handled like
input/output parameters and have their actual counterparts in the guard vari-
ables in the caller (here, e.g. g1, g2 for the call foo0 in main). Note that we
consider exit in a procedure is not reachable, i.e., ¬gout, if either the program is
non-terminating or an assertion in a procedure is violated. Hence, the exit guard

1 We consider non-recursive programs with multiple procedures (cf. model in [5]).
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Fig. 1. Example program and its encoding

condition in the definition of a transition function includes assertion checks as
in Tbar. We use a single static assignment (SSA) encoding, which gives a fresh
name to each update of a variable if it is modified multiple times, such as for
example in main.

Each call to a procedure h at call site i in a procedure f is modeled by a place-
holder predicate hi(x

p in
i ,x p out

i ) occurring in the formula Tf for f . The place-
holder predicate ranges over intermediate variables representing its actual input
and output parameters x p in

i and x p out
i , respectively. Placeholder predicates

evaluate to true in the beginning, which corresponds to havocking the program
variables in procedure calls. As the analysis progresses, they get strengthened by
summaries. We later explain how we use the guard variables in performing this
propagation. In procedure main in Fig. 1, the placeholder for the first procedure
call to foo is foo0((x0, g1), (x1, g2)) with the actual input and output parameters
x0, x1, respectively, and the corresponding guard variables that encode whether
the entry and exit of foo0 are reachable. Let Propsf denote the property (asser-
tion) in procedure f (e.g. the assertion in bar in Fig. 1). Note that we view these
formulae as predicates, e.g. T (x ,x ′), with given parameters x ,x ′, and mean
the T [a/x , b/x ′] when we write T (a , b). Moreover, we write x and x with the
understanding that the former is a vector, whereas the latter is a scalar.

CSf is the set of call sites in procedure f , and the set of all call sites CS
is

⋃
f∈F CSf . fn(i) is the procedure called at call site i. We write Xf for the

variables in Tf , and X̂ for the entirety of variables in Tfn(i)(x in
i ,x out

i ) for all
i ∈ CS.

Summaries, and Calling Contexts. Inter-procedural compositional proofs of a
sequential program usually use a set of auxiliary predicates to define abstrac-
tions of loops and procedures. These abstractions are usually formally defined
by means of a set of predicates – invariants, a summary and a calling con-
text (CallCtx i) for every procedure invocation hi at call site i in a call-graph
of the program. These predicates have the following roles: Invariants abstract
the behaviour of loops inside functions. Summaries abstract the behaviour
of called procedures; they are used to strengthen the placeholder predicates.
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Calling contexts abstract the caller’s behaviour w.r.t. the procedure being called.
When analysing the callee, the calling contexts are used to constrain its inputs
and outputs. The set of sub-traces corresponding to a function at a call site is
characterised by a conjunction of the calling context and summary predicates
associated with the function at that call site. We provide formal definitions for
summaries and calling contexts below (invariants are not needed in this paper).

Definition 1. For a procedure given by Tf we define:

– A summary is a predicate Sumf such that:

∀Xf : Tf (xin,xout) =⇒ Sumf (xin,xout)

– The calling context for a procedure call h at call site i in the given procedure
is a predicate CallCtx i such that

∀Xf : Tf (xin,xout) =⇒ CallCtx i(x
p in
i ,xp out

i )

For instance, a summary for procedure foo in Fig. 1, is Sumfoo((y, g6),
(r, g7)) = (y<MAX ⇒ r>y).2 A (forward) calling context for the first call
to procedure foo in main is CallCtx foo0

((x0, g1), (x1, g2)) = (g1 ⇒ x0<0).
We observe that the guard variables are also used in defining summaries and

calling contexts. They have the same meaning as in transition functions. The
reason we have defined CallCtx over both input and output parameters is so we
can propagate it in forward or backward directions.

3 Compositional Verification and Refutation Overview

A decomposition of a verification problem intuitively splits the original problem
into a set of sub-problems that cover the original problem. The decomposition
operator for the problem has a corresponding composition operator for compos-
ing the results obtained from the sub-problems in order to obtain a solution of
the original problem.

In terms of program executions, a decomposition can be viewed as a way a
proof of verification splits the behaviour, i.e. the set of all execution traces of a
program, in constructing the proof. Consider a safe version of the code in Fig. 1
where the assertion in bar is changed to z ≤ 10. A safety proof for the pro-
gram can be constructed hierarchically by using the following summaries for foo
and bar: Sumfoo((y, g6), (r, g7)) = (r=y+1∧ g6=g7) and Sumbar((z, g8), (g9)) =
(g9 ⇒ z ≤ 10). Then, the proof for main can be constructed using the recur-
sive Algorithm 1. The proof for the leaves (foo and bar) involves showing their
transition functions imply their respective summary. Proof composition for a
non-leaf procedure will use the caller summaries to similarly construct a proof
(a summary) for the caller. In our example, the program is indeed proved safe
as the algorithm constructs a Summain, which, in this case, can be a suitable
2 MAX denotes the maximum possible value in the type of y.
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Algorithm 1. Composition operator for summaries
1: procedure Compose(f)
2: for all i ∈ CSf do � CSf are the call sites in procedure f
3: Sum fn(i) ← Compose(fn(i)) � fn(i) is the procedure called at call site i

4: Sumf ← proof (f) � uses Sum fn(i), i ∈ CSf and proof composer operator
5: return Sumf � Sumf can be cached

abstraction of the transition function for main, that is not false, while checking
that the constructed summaries verify all the embedded properties.

For sequential programs, decompositions can be vertical or horizontal. A
vertical decomposition usually focuses on entire execution traces and splits the
behaviour of the program into subsets of end-to-end traces, e.g. program slic-
ing [16]. A horizontal decomposition is usually based on a syntactic decompo-
sition of the program e.g. into procedures. This paper focuses on solving the
refutation problem with horizontal decompositions.

The challenge in automating horizontal compositional verification lies in syn-
thesising a set of precise summary predicates for the procedures in the call graph.
Note that in the program in Fig. 1, it was essential to constrain the input z to
bar to be (z ≤ 1) to get a proof. This effort is made harder if the code has loops,
which require invariants and use of abstractions. The calling contexts and sum-
maries can be mutually dependent even for non-recursive programs. In general,
one requires iterative fix-point computation on the call-graph structure, possi-
bly using abstraction and refinement. A pre-requisite for performing abstraction
refinement is the ability to refute safety and check for spurious counterexamples
also in a modular and efficient fashion, which is the goal of this paper.

A Practical View of the Modular Refutation Problem. Consider the example in
Fig. 1 in Sect. 2. This program is unsafe because when bar is called the actual
argument to it that takes the place of z can at most be only 1. The question is if
we can arrive at this refutation modularly. Analysing procedure bar in isolation
indeed gives a counterexample, which could be possibly spurious.

Instantiated on the example in Fig. 1, a refutation involves checking ¬∀z, g8 :
g8 ⇒ (z > 10). A counterexample could be g8∧z = 5, for example. The question
is now how to decide whether this counterexample is spurious or not, and to
find a valid counterexample if one exists. For instance, z = 5 turns out to be
spurious if we consider the whole program because it clashes with x0 < 0 in
main. However, z = −8 would be a valid counterexample.

The set of local counterexamples found in a procedure f might contain many
counterexamples that are spurious for the whole program, i.e. they are infeasible
from the entry point of the program. A definite answer to this question cannot
be given by looking at the local problems alone, but only by analysing the
global one. This is the reason why refutation in horizontal decompositions is
hard — unlike refutation in vertical decompositions where a refutation of the
local problem implies the refutation of the global one.
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Intuitively, the negation of the assertion has to be hoisted up along the error
path to the entry point of the program. If the obtained weakest precondition for
the violation of the assertion is not false, then the counterexample is feasible.
Propagating up the counterexample itself is not sufficient to decide spuriousness
as illustrated above.

4 Formalising Horizontal Compositional Refutation

In this section we formalise the problem of safety refutation for sequential pro-
grams. To simplify the presentation we focus on loop-free programs. The formal-
isation for programs with loops is structurally similar, but in addition, requires
the handling of invariants, which is orthogonal to the compositional aspect.

We give three different formalisations – the first corresponds to a monolithic
approach, and the remaining two correspond to compositional approaches.

4.1 Monolithic Safety Refutation Problem

For non-recursive programs, since one can always inline every procedure call at
its call site, we can replace every call by recursively inlining its body. Then, to
refute safety we have to show unsatisfiability of the following formula:

∀X̂ :
∧

j∈CS ginfentry ∧ Tfn(j)(x in
j ,x out

j ) ∧ InlineSums fn(j) ⇒ Props fn(j)(x j) (1)

where

– InlineSumsf is
∧

i∈CSf
InlineSum fn(i)(x

p in
i ,x p out

i ),
– InlineSumf (x in

f ,x out
f ) is Tf (x in

f ,x out
f ) ∧ InlineSumsf ,

– X̂ is the entirety of variables in (1),
– and the conjunction with ginfentry states that the entry procedure is reachable.3

Alternatively, we can write:

∃
for all f∈F

︷ ︸︸ ︷
Sumf , . . . :

∧
f∈F ∀Xf :(

ginfentry ∧ Tf (x in
f ,x out

f ) ∧ Sumsf =⇒ Propsf (x f )
)

∧ (
Tf (x in

f ,x out
f ) ∧ Sumsf ⇐⇒ Sumf (x in

f ,x out
f )

)
(2)

where Sumsf is
∧

i∈CSf
Sumfn(i)(x

p in
i ,x p out

i ).
This formulation uses a predicate Sumf to exactly express the behaviours

of each procedure f . (1) and (2) are equisatisfiable, i.e., 1 is satisfiable iff 2
is satisfiable. The existential quantifier in (2) can be uniquely eliminated by
recursively replacing the Sumf predicates by left-hand side of the equivalence in
the last line in (2), obtaining (1). Note that solving (1) is NP-complete, whereas

3 This amounts to using Tfentry [true/gin
fentry ] as the transition relation of fentry .
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solving (2) is PSPACE-complete. However, (1) may be exponentially larger (in
the number of variables) than (2).

Both versions are monolithic because they consider the entire program as a
whole. In particular, (2) finds summaries globally, i.e. for the whole program.

Also note that, proving unsatisfiability of (2) shows the inexistence of a ver-
ification proof, but it does not directly allow us to derive a counterexample in
terms of an execution trace because of the universal quantification of the vari-
ables. Moreover, showing unsatisfiability of (2) is difficult because it involves
proving the inexistence of summary predicates. For this reason, many practical
techniques, such as SAT-based Bounded Model Checking use (1) (considering
bounded unwindings for programs with loops in order to make them loop-free).
Note that negating (1) results in an existentially quantified problem, whose sat-
isfiability witnesses a refutation in the form of values for the variables X̂.

However, solving (1) monolithically is often intractable. Therefore, we want
to decompose the problem into smaller subformulae that are faster to solve.
(2) is amenable to decomposition, but it does not allow us to approximate the
summaries with the help of abstractions (because of ⇔ in last line). Therefore
we give a third formulation of the monolithic problem that additionally uses
calling contexts. The calling context for the entry procedure is ginfentry .

∃
for all f∈F

︷ ︸︸ ︷
Sumf ,CallCtx f , . . . :

∧
f∈F ∀Xf :(

CallCtx f (x in
f ,x out

f )∧
Tf (x in

f ,x out
f ) ∧ Sumsf =⇒ Propsf (x f )∧

Sumf (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx fn(j)(x

p in
j ,x p out

j )
)

(3)

Equation (3) is also equisatisfiable with (2), although (3) admits more solutions
to Sumf including those that are over-approximations adequate to prove the
properties. To see this, if (2) is satisfiable, the precise solution of (2) for Sumf

can be used to satisfy (3) by plugging it in for both CallCtx f and Sumf in (3). If
(2) is unsatisfiable, then so is (3) because one or all behaviour included in Sumf

solution of (2) violates one of the properties. Then, every solution to (3) would
violate the properties as they are over-approximations of the precise summaries.

4.2 Modular Safety Refutation Problem

Let us now have a look at the horizontal decomposition following the procedural
structure of the program. The goal is to compute the summaries Sumf for each
f while considering only f and the summaries for the procedures called in f .
We can attempt at achieving this by flipping the existential quantifier (∃Sumf )
and the top-level conjunction (

∧
f∈F in (3)). However, this does not result in

an equisatisfiable formula because existential quantification does not distribute
over conjunctions. Therefore, we need an alternative formulation to solve the
existential query per procedure. One approach is to search for a minimal solution
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for summaries and calling contexts occurring within each calling site of procedure
f for a given context for f that satisfies all the embedded properties in f as shown
in 4. I.e. for each f ∈ F we have:

minSumf ,

for all j∈CSf

︷ ︸︸ ︷
CallCtx j , . . . : ∀Xf :(

CallCtx f (x in
f ,x out

f )∧
Tf (x in

f ,x out
f ) ∧ Sumsf =⇒ Propsf (x f )∧

Sumf (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx j(x

p in
j ,x p out

j )
)

(4)

minP : F (P ) is defined w.r.t. implication order for a formula F involving
predicates P , i.e. as ∃P : F (P ) ∧ ∀P ′ : (P ′ ⇒ P ) ⇒ ¬F (P ′). Note that minP
is not unique in a partial order. (4) gives a solution for Sumf and the calling
contexts for all embedded calling sites relative to a CallCtx f , assuming there
is a minimal solution for all embedded procedures. But, we have not broken
the dependency between calling contexts and summaries. Solving this problem
requires computing a fixed point in the composition operator (presented below)
and computing minimal solutions for the summary and calling context predi-
cates. That is, what has been an existential second-order satisfaction problem
in (3), has now become a second-order minimisation (∃∀) problem. The reason
for this is that the mere existence of a solution for Sumf and CallCtx fn(j) does
not prove that the overall verification problem holds. Therefore, we pessimisti-
cally have to assume that we require the exact calling contexts and summaries
in order to decide the problem during proof composition.

The proposed proof composition operator (compose) with calling contexts is
shown in Algorithm 2 and is more complex than Algorithm 1. The idea is to use
the call graph of the program to compute the minimal calling context for each
call site of procedure call of f piecewise in a top-down fashion use that calling
context to compute a piecewise minimal summary for f for that call site (note
the conjunction on Line 12 of Algorithm 2) consistent with all the properties in
f . The piecewise summaries and contexts are combined disjunctively as they are
built, which takes care of the dependency between summary and calling contexts.
In the algorithm, each time compose is called recursively for f , it is called with
a new piece of entry calling context for f and (4) is solved with summaries
computed up to that point for the procedures in the body of f . Solving the
equation smay result in new contexts for each call site (if any) inside f and a
new piece of summary for f all of which are accumulated.

For a program with entry fentry , a proof can be constructed by calling
compose(fentry , ginfentry ). The calling context ginfentry means that the entry proce-
dure is reachable. The calling context of all embedded functions are initialised
to false as that is the least element and also makes everything following the first
call site unreachable. The summary for each f is initialised to ¬goutf , meaning
that its exit is not reachable and hence execution cannot continue beyond any
call to f . This initial value for summary has the effect of blocking analysis of all
functions following f in the code until a piecewise summary is computed for f .
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Algorithm 2. Composition operator with calling contexts
1: global Sumf ← ¬gout

f for all f ∈ F
2: CallCtxf ← false for all f ∈ F
3: procedure compose(f , CallCtx∗

f )
4: while true do � Repeat until fixed point reached

5: Solve (4) for f with CallCtx∗
f as CallCtx f �

{
obtain Sumf and CallCtx j

for all j ∈ CSf

6: for all j ∈ CSf do � join calling contexts for fn(j)
7: CallCtx fn(j) ← CallCtx fn(j) ∨ CallCtx j(x

in
fn(j), x

out
fn(j))

8: if CallCtx fn(j) for all j ∈ CSf has not changed then
9: return Sumf

10: for all j ∈ CSf for which CallCtx fn(j) has changed do
11: Sumj ← compose(fn(j),CallCtx j(x

in
fn(j), x

out
fn(j)))

12: Sum fn(j) ← Sum fn(j) ∨ (CallCtx j(x
in
fn(j), x

out
fn(j)) ∧ Sumj)

13: � join summaries for fn(j)

Observe that, as opposed to monolithic (3) where the fixed point computation
for resolving the mutually dependent summary and calling context predicates
(cf. [23]) is done within the solver for solving the monolithic formula, the fixed
point in the modular version must be computed during the composition of the
individual results. I.e. we have to saturate the Sumf and CallCtx f predicates.

Theorem 1. We obtain Sumfentry = false using Algorithm 2 iff (3) is unsatisfi-
able. I.e. horizontal decomposition is sound and complete.

Proof (sketch): We prove this by induction on the depth (k) of the top-level
function in the call graph of the program.

For the base case (k = 0), there is only one procedure call - the call to the
entry procedure, fentry . Since the calling context of fentry is ginfentry , and there are
no other procedure calls, it is evident that computing Sumfentry from Algorithm 2
effectively reduces to finding it by solving (4) (line 5 of Algorithm 2), with Sums
and CallCtx j not present. This makes Eqs. (4) and (3) identical and hence the
theorem follows trivially.

Proceeding with the induction step for k+ 1 assuming the theorem holds for
all functions in the call graph with depth ≤ k. That is, we assume as hypothesis
the summary computed by compose satisfies theorem for all function calls in
the body of f for all contexts. Suppose (3) is unsatisfiable. We will argue that
Algorithm 2 must return false.

If (3) is unsatisfiable then there must be at least one function (either the
top-level function or something deeper in the call graph) that is unsatisfiable.
Suppose it is one of the called functions, say h, that is unsatisfiable. Then, by our
induction hypothesis, the algorithm will return false for Sumh. The moment one
of the embedded summaries becomes false our algorithm immediately saturates
because Algorithm 2 is trivially satisfiable with minimal solution of false for
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Sumf . If (3) is unsatisfiable because the top-level function f is unsatisfiable,
then it must be because Propsf is inconsistent with Tf . In this case, Algorithm 2
can only return false.

4.3 Modular Safety Refutation with Witnesses

(4) suffers from the same problem as (3) that we cannot extract counterexamples
in terms of an execution trace in case of a refutation because the formulae
are unsatisfiable for refutations. Therefore we give next a formulation and a
corresponding composition operator that produces refutation witnesses. The idea
here is to compute piecewise contexts and summaries backwards starting from
exit points of each procedure, much like a weakest-precondition computation
works. Additionally, we start with negation of properties and compute maximal
summary and contexts that possibly lead the program to an error state. In other
words, a summary computed for f represent maximal symbolic witness to all
the states reachable to safety violation. Such a summary can be obtained as
maximal solutions to the equation shown in 5.

maxSumf ,

for all j∈CSf

︷ ︸︸ ︷
CallCtx j , . . . : ∀Xf :

Sumf (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx j(x

p in
j ,x p out

j ) =⇒ (CallCtx f (x in
f ,x out

f ) ∨ ¬Propsf )∧
Tf (x in

f ,x out
f ) ∧ Sumsf

(5)

where maxP.F (P ) is defined as usual: ∃P.F (P ) ∧ ∀P ′.(P ⇒ P ′) ⇒ ¬F (P ′).
(5) describes maximal solutions for the summary and calling contexts that

are contained in the behaviour of the procedure. That is the reason the predicates
for the summary and the calling contexts (for the called functions) appear on the
left-hand side of the implication and the transition relation is on the right-hand
side, i.e. reversed in comparison with (4). The disjuncts in the first part of the
consequent of (5) are the sources of safety violations: these are safety violations
in the caller (which are propagated by CallCtx f ), and safety violations in f itself
(¬Propsf ). Safety violations in callees are propagated through the summaries.
Both these are constrained to be consistent with the transition relation of f (with
current summaries plugged in for the called functions), which ensures spurious
errors are not propagated upwards.

We use the composition operator as in Algorithm 2, but with the following
modifications to the initialization. We call this composition operator compose ′

or Algorithm 2’ from now on.

– Initially, Sumf ← ¬ginf for all f ∈ F , meaning that the entry of f is not
backwards-reachable.

– In Line 5, we solve (5).

The calling contexts for all embedded functions are initialized to false as
before except for the top-level function fentry. A refutation is constructed by
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computing compose ′(fentry ,¬goutfentry
). The calling context ¬goutfentry

of fentry means
that we cannot reach the regular exit of the entry procedure if there is a property
violation. If there are no property violations at this level (or no properties),
then this choice for top-level context would still work as the second conjunct in
Eq. 5, which denotes the transition relation, would ensure the precise contexts
propagated to the first embedded call site from exit point. The choice of initial
summary of ¬ginf for all embedded functions will ensure that the summaries are
generated in order of dependency of function calls backward from the exit point.

Theorem 2. We obtain Sumfentry using Algorithm 2’ such that ∃xin,xout :
ginfentry ∧ Sumfentry (x

in,xout) iff (3) is unsatisfiable.

Note that the conjunction with ginfentry projects the summary on the inputs,
which must be satisfiable to have a refutation.

Proof (sketch): In contrast to Algorithm 2 with (4), Algorithm 2’ uses (5) that
computes the maximal solutions for the summary and calling contexts contained
in the program behaviour. The summaries and calling contexts are computed
such that their projection on the input variables of a procedure is the weakest
precondition w.r.t. the properties (Props), whose complement is the refutation.
Thus at the entry function, fentry , we get Sumfentry (x

in,x out) as weakest pre-
condition for the negation of the property such that ginfentry ∧ Sumfentry (x

in,x out)
is satisfiable iff (3) is unsatisfiable.

4.4 Worked Example

Let us consider the example in Fig. 1, but with the conditional in line 2 being
x < 10. We start with Summain((x0, g0), (g5)) = ¬g0, Sumfoo((y, g6), (r, g7)) =
¬g6, Sumbar ((z, g8), (g9)) = ¬g8, and CallCtx∗

main((x0, g0), (g5)) = ¬g5,
CallCtx foo((y, g6), (r, g7)) = false, CallCtx bar((z, g8), (g9)) = false.

The composition operator is called for main. We solve (5):

maxSummain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x0, g1), (x1, g2))∧
CallCtx foo1

((x1, g2), (x2, g3))∧
CallCtx bar ((x2, g3), (g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2 ∧ ¬g3

We obtain the following solutions for the predicates: CallCtx bar = ¬g4,
CallCtx foo1

= ¬g3, CallCtx foo0
= ¬g2, Summain = ¬g0 ∧ ¬g5.

Then we recur into bar with (5) instantiated as:

maxSumbar : ∀z, g8, g9 :
Sumbar ((z, g8), (g9)) =⇒ (¬g9 ∨ ¬(g8 ⇒ z > 10))∧

(g9 = (g8 ∧ z > 10))
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Hence, we get for Sumbar : (g8 ⇒ ¬(z > 10)) ∧ ¬g9.
In Line 6 of Algorithm 2’, (5) for main is then:

maxSummain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x0, g1), (x1, g2))∧
CallCtx foo1

((x1, g2), (x2, g3))∧
CallCtx bar ((x2, g3), (g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2∧
(g3 ⇒ ¬(x2 > 10)) ∧ ¬g4

which results inCallCtx bar = ¬g4,CallCtx foo1
= g3 ⇒ ¬(x2 > 10),CallCtx foo0

=
¬g2, Summain = ¬g5. Hence, CallCtx foo is updated to g7 ⇒ ¬(r > 10).

In the next iteration of compose(main) we recur into foo1 and solve:

maxSumfoo : ∀y, g6, r, g7 :
Sumfoo((y, g6), (r, g7)) =⇒ ((g7 ⇒ ¬(r > 10)) ∨ ¬true)∧

(g6 = g7) ∧ (r = y + 1)

Thus, Sumfoo is updated to (g6 ⇒ ¬(r > 10) ∧ g7) ∧ (r = y + 1).
Then in Line 6 in compose(main), we solve

maxSummain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x1, g2))∧
CallCtx foo1

((x2, g3))∧
CallCtx bar ((g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
(g1 ⇒ ¬(x1 > 10) ∧ g2) ∧ (x1 = x0 + 1)∧
(g2 ⇒ ¬(x2 > 10) ∧ g3) ∧ (x2 = x1 + 1)∧
(g3 ⇒ ¬(x2 > 10)) ∧ ¬g4

which gives us Summain = (g0 ⇒ ¬(x0 > 8)) ∧ ¬g5. The calling contexts
CallCtx bar = ¬g4, CallCtx foo0

= g2 ⇒ ¬(x1 > 10), and CallCtx foo1
= g3 ⇒

¬(x2 > 10) do not result in an update of the calling contexts for foo and bar
(Line 8 in Algorithm 2). g0 ∧Summain is satisfiable, hence, x ≤ 8 is a (maximal)
refutation witness.

5 Examples of Refutation Algorithms

Algorithm 2’ is not only applicable to straight-line programs with multiple pro-
cedure invocations, it can still be used for programs with loops by introducing
invariants into the formula for the modular subproblem (5). However, in general
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it is hard to solve the problems without using approximations by bounding the
number of unwindings and/or using abstractions for computing the predicates
involved.

In the previous section, we have described the elements necessary for compo-
sitional, horizontal refutation proofs. In this section, we will give three examples
of algorithms that instantiate this framework (Algorithm 2’), which we have
implemented to compare them experimentally in Sect. 6. We assume that loops
have been unwound a finite number of times before application of these tech-
niques. The difference in the following three techniques lies in the abstractions
that are used to solve for Sumf and CallCtx f in (5). We consider techniques
that use constraint solving to find counterexamples.

5.1 Concrete Backward Interpretation

This technique is the one sketched in the example at the beginning of Sect. 3.
Formally, we use the domain of predicates that track a single constant value for
each variable, defined as follows: Let P (x ) = {false} ∪ {x = d | di ∈ Dom(xi)}
with the domain Dom(xi) of variable xi, then we admit the following predicates
for summaries and calling contexts: Sumf ∈ {ginf ⇒ p | p ∈ P (x in

f )} and
CallCtx f ∈ {goutf ⇒ p | p ∈ P (x out

f )}. We explain now in an example how
Algorithm 2’ proceeds using this domain.

Example. Let us consider the example in Fig. 1 in Sect. 2. We start with
compose ′(main,¬g5). We obtain the calling contexts ¬g2,¬g3,¬g4 for foo0, foo1,
bar , respectively. We recur into compose ′(bar ,¬g9). We have to solve (5) where∑

bar is instantiated with the above domain:

∃d : ∀z, g8, g9 :
(g8 ⇒ z=d) =⇒ (¬g9 ∨ ¬(g8 ⇒ (z > 10)))∧

(g9 = (g8 ∧ z > 10))
(6)

The partial order of our domain has only two levels false and the values for d .
Hence, we can implement max by ∃d ; if there is no d then p = false. A constraint
solver may return, for example, d = −4; Sumbar is hence g8 ⇒ (z = −4). This
is an under-approximative summary of bar w.r.t. property violation.

In the next iteration of compose ′(main,¬g5) we solve:

∃d0, . . . , d3 : ∀x0, g0, . . . , g5 :
(g0 ⇒ x0=d0)∧
(g2 ⇒ x1=d1)∧
(g3 ⇒ x2=d2)∧
(g4 ⇒ d3) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2∧
(g3 ⇒ (x2 = −4)) ∧ ¬g5

(7)



Compositional Safety Refutation Techniques 177

and obtain CallCtx foo1
= (g3 ⇒ (x2 = −4)). compose ′(foo, g7 ⇒ (r = −4))

returns g6 ⇒ (y = −5) for Sumfoo1
. Note that the boolean variable d3 stands

for the reachability of the exit of bar. Since bar has no return value, this is how
its exit is encoded. Proceeding similarly we get compose ′(foo, g7 ⇒ (r = −5)) =
(g6 ⇒ (y = −6)); and finally Summain = (g0 ⇒ x0 = −6). Hence, we have found
a true global counterexample.

5.2 Abstract Backward Interpretation

Abstract backward interpretation computes sufficient preconditions to safety vio-
lations, i.e. negations of necessary preconditions to safety. The size of the sum-
maries can vary from very concise to larger than the procedure, depending on
the abstraction.

There are a couple of techniques to implement such abstract interpretations
that are distinguished by the way abstract preconditions are inferred, e.g. (clas-
sical) abstract domain transformers (e.g. [20]), template-based synthesis (e.g.
[15]) or interpolation (e.g. [1]).

We are going to use the template-based synthesis technique used in [3] to solve
(5). We know how to compute over-approximative abstractions with that tech-
nique. Hence, we use an over-approximation to compute an under-approximation
(similar to computing max f by −min(−f)). This means we compute predicates
Sum ũ

f and CallCtx ũ
j whose negations are Sumf and CallCtx j , respectively. This

is done by solving the following formula in place of (5) in Algorithm 2’.

minSum ũ
f ,

for all j∈CSf

︷ ︸︸ ︷
CallCtx ũ

j , . . . : ∀Xf :(
CallCtx ũ

f (x in
f ,x out

f ) ∧ Sums ũf∧
Tf (x in

f ,x out
f ) ∧ Propsf (x f ) =⇒ Sum ũ

f (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx ũ

j (x p in
j ,x p out

j )
)

(8)

This formula is derived from (5) by negating (CallCtx f ∨ ¬Props) on the
right-hand side of (5), which yields (CallCtx ũ

f ∧ Props), reversing the implica-
tion, and minimising to obtain an over-approximation for Sum ũ and CallCtx ũ.
Similar approaches are used in [5,10]. Since convex domains are too impre-
cise for this purpose, we use a disjunctive domain [22]. For our experiments
we used intervals as a base domain. Formally, let P (x ) = {∨k d

′
k ≤ x ≤

dk | di, d
′
i ∈ Dom(xi), k ≥ 0}, then Sumf ∈ {ginf ⇒ p | p ∈ P (x in

f )} and
CallCtx f ∈ {goutf ⇒ p | p ∈ P (x out

f )}. Our implementation also ensures that
arithmetic overflows create new disjuncts in order to avoid precision loss. The
second source of additional disjuncts that we take into account are Lines 7 and 12
in Algorithm 2’.

Example. For the example in Fig. 1, we compute compose ′(main,¬g5). We solve
(8) with CallCtx ũ

main = g5 and get CallCtx ũ
bar = g4, i.e. CallCtx bar = ¬g4.
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We recur into compose ′(bar ,¬g9), i.e. CallCtx ũ
bar = g9 We have to solve (8)

instantiated with our domain.

∃d, d′ : ∀z, g8, g9 :
(g9 ∧ true∧
(g9 = (g8 ∧ z > 10)) ∧ (g8 ⇒ (z > 10)) =⇒ (g8 ⇒ (d ≤ z ≤ d′)))

(9)

Note that Sums ũf is true because the initial under-approximations are false—the
superscript ũ flags predicates that carry negations of under-approximations. We
get Sum ũ

bar = (g8 ⇒ (11 ≤ z ≤ MAX )), i.e. Sumbar = (g8 ∧ (MIN ≤ z ≤ 10)).
MAX and MIN denote the maximum, resp. minimum, possible value for the
type of z.

We proceed similarly. Finally, compose ′(main,¬g5) computes Sum ũ
main =

(g0 ⇒ (9 ≤ x0 ≤ MAX )), i.e. Summain = (g0 ∧ (MIN ≤ x0 ≤ 8)).
Note that (8) expresses an over-approximation of good states; the comple-

ment is therefore guaranteed not to contain any good states, but only bad and
unreachable states, and hence no strict under-approximation of bad states. How-
ever, this does not matter since we project Sumfentry on the initial condition (see
Theorem 2) to obtain a true under-approximation of inputs that violate a prop-
erty.

Abstract backward interpretation is not limited to bounded unwindings of
the transition relation, but can also be used for programs with loops (cf. [5,11])
by calling invariants into play in (8).

5.3 Symbolic Backward Interpretation

This technique computes the exact weakest precondition for the bounded prob-
lem. The technique is complete for loop-free programs. However, the size of the
obtained summaries is in the same order as the procedure size in the worst case.

The domain used are sets of variables, so-called dependency sets. These sets of
variables, X in

f , Xout
f , Xp in

j , Xp out
j , describe which variables should be kept as

relevant part of the summary. We then use them to compute an exact summary
as the following predicate Sumf (x in,x out):

∃Xf \ (X in
f ∪ Xout

f ∪
for all j∈CSf

︷ ︸︸ ︷
Xp in

j ∪ Xp out
j ∪ . . .) :

(CallCtx f (x in,x out) ∨ ¬Propsf ) ∧ Tf (x in,x out) ∧ Sumsf

(10)

We implement the existential quantification in (10) by Gaussian elimination
to eliminate as many of the intermediate or irrelevant variables as possible. After
elimination the summary contains only variables that have a dependency on the
property Propsf , on x out, or on the placeholder predicates, which are going to
be replaced by summaries during the composition. The elimination can have
positive and negative effects on the formula size depending on non-determinism
and control flow paths in the procedure.
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The composition operator is the same horizontal composition operator as in
the two previous techniques. Context-sensitivity is exploited exactly in the same
way as in the previous two techniques. The calling context at call site j is the set
of output variables Xp out

j that a procedure call backward-transitively depends
on the given property. The resulting calling context dependency set Xout

f is then
used for eliminating intermediate variables in (10) in addition to the dependency
sets obtained from Sumsf , and Propsf . The set of input variables X in

f that have
not been eliminated is the dependency set Xp in

f of the summary Sumf .
Any satisfiable assignment to x in

fentry
in the formula obtained by Gaussian

elimination of the summary predicates in the entry function is a feasible global
refutation.

Example. For example, in Fig. 1 the symbolic backward interpreter starts from
the exit of main with Xout

main = ∅ to start with. As it arrives in bar, it retains
the negation of the assertion ¬(g8 ⇒ (z > 10)) and updates the dependency
set to X in

bar = {z, g8}. On simplification, this gives the summary for bar as
g8 ∧ ¬(z > 10).

Then the technique proceeds to the caller of bar, replacing the variables in
the dependency set by the parameter passed, i.e. Xp out

foo1
= {x2, g3}. Then it

recurs into the call to foo. The statement r = y + 1 gives the summary of foo as
r = y + 1 and the dependency set {y, g6}. The next call to foo has already been
analysed with the same dependency set, hence there is no need to recur.

Proceeding in the main function, we finally get the summary for main as (g1 =
g0∧(x0 < 0))∧foo0((x0, g1), (x1, g2))∧foo1((x1, g2), (x2, g3))∧bar((x2, g3), (g4)).
Substituting the placeholder predicates by their respective summaries (variables
are renamed) allows us to evaluate the summary for main. Since it is satisfiable,
we have found a global refutation.

6 Experiments
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Fig. 2. Comparison on product-lines benchmarks

We performed a number of
experiments to evaluate com-
positional refutation techniques
in comparison with monolithic
approaches.

Implementation. We have imple-
mented these safety refutation
techniques as an extension to
2LS [3,24]. 2LS is a verification
tool built on the CPROVER
framework [9], using MiniSAT
2.2.1 as the backend solver
(although other SAT and SMT
solvers with incremental solving
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support can also be used). We limit resources to 900 s CPU time and 13 GB
memory per benchmark. To aid reproducibility, we provide4 the implementation
sources along with the compilation instructions, the benchmarks, and scripts
that can be used to run the tool on the benchmarks. As explained in Sect. 5,
the three techniques are instances of a context-sensitive inter-procedural analysis
that traverses the callgraph backwards and propagates summaries and calling
contexts. For the concrete interpretation, values for non-deterministic choices are
picked by the SAT solver. For the abstract interpretation we use disjunctions of
intervals.

Benchmarks. We selected the unsafe examples (265 benchmarks) from the
product-lines collection of the SV-COMP 2017 benchmarks set for our exper-
iments. These benchmarks have a reasonably complex procedural structure (83
procedures per benchmark on average), which makes it suitable to test the effec-
tiveness of our techniques. We set an unwinding depth of 5 for all the bench-
marks, across all the techniques. The chosen depth might have been, in some
cases, higher than what would be necessary to find a refutation. However, the aim
of our experiments was to compare the scalability of the techniques in general,
and not to find out the least amount of time needed to solve a given benchmark.

Results. Figure 2 shows the results plotting for each technique the cumulative
time (y-axis) it takes to solve the given number of benchmarks (x-axis). The
longer the line for a technique extends to the right the more benchmarks were
solved within the resource limits. These results show some interesting tenden-
cies. We observe that the symbolic backward interpretation performs best. It is
complete, but could potentially degrade into a monolithic analysis if summaries
cannot be sufficiently simplified and reused. But on this benchmark set it works
quite well on a certain number of benchmarks. The abstract backward interpreta-
tion is very fast on a couple of benchmarks, but then remains inconclusive. This
is supposedly due to the imprecision introduced by the weak abstract domain
that we use. Yet, this is encouraging that by a clever choice of abstractions one
could outperform the symbolic backward interpretation. The concrete backward
interpretation succeeds only on very few benchmarks and is surprisingly slow.
An explanation for this is that it is required to make non-deterministic choices
that may turn out to be bad choices and make a counterexample infeasible.
Moreover, the summaries that it computes usually do not generalise beyond the
procedure invocation they were generated for. Hence, this technique is likely to
degrade into following the entire execution path, spoiling the benefits of mod-
ularity while exhibiting the drawbacks of abstraction. The monolithic analysis
(BMC), which is based on full inlining is slowest but solves almost as many
benchmarks as the abstract one.

4 https://github.com/kumarmadhukar/2ls/tree/atva17.

https://github.com/kumarmadhukar/2ls/tree/atva17
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7 Conclusion

We investigated compositional refutation techniques in horizontal, e.g.
procedure-modular, decompositions of sequential programs. We showed how to
derive a compositional refutation framework step by step from the monolithic
problem. We also compared the completeness properties of concrete, abstract
and symbolic modular refutation approaches. Our experiments show that com-
positional refutation techniques have an advantage over monolithic approaches,
however, not all tested approaches perform equally well because of their varying
completeness. Using a portfolio of fast incomplete techniques and slower com-
plete ones may ensure that modular techniques are always at least as fast as
monolithic ones in practice.

Open Questions. Modular analyses should be independent of a program’s syntac-
tic structure because real-world programs are not written in a nice and balanced
way that would enable efficient modular analysis. It would be worthwhile to
explore semantic decompositions into modules in order to make these techniques
scale on real-world programs. W.r.t. the inter-procedural backward analysis, it
remains to be investigated how to handle recursion.

Moreover, it would be interesting to look into compositional refutation in
termination analysis. Also there, spuriousness of local refutations can occur due
to lack of context information: To find a counterexample to termination one
needs to find a stem from the entry point. Compositionality in this context has
been explored in the Ultimate tool [17]. We would also consider performance
comparisons with testing, i.e. dynamic refutation techniques (random, directed,
concolic, etc.) to be beneficial to advance research in static refutation techniques.

Related Work. Compositional automated verification approaches have been con-
sidered in the tools Whale [1] and FunFrog [26], for example. Horn clause encod-
ings were used in [18]. These tools eventually use interpolation to compute
abstractions. Under-approximating precondition inference techniques have been
proposed for polyhedra [20] and with the help of bit blasting and loop iteration
estimation [4]. All these techniques can be used in our setting, however, their
completeness properties remain to be evaluated. Completeness considerations
[21] have been conducted for compositional LTL model checking [7,8] of (paral-
lel) compositions of (infinite-) state transition systems. Since the decomposition
of sequential programs can be encoded into a composition of parallel programs
(with appropriate synchronisation), their completeness results are expected to
hold in our setting. Compositionality has also been explored in the context of
dynamic test generation to achieve scalability by memoizing symbolic execution
sub-paths as test summaries [13]. This has given rise to an incremental approach
for statically validating symbolic test summaries against code changes [14]. In
our framework memoization is naturally handled by the composition operator.
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Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 62–77. Springer, Cham
(2015). doi:10.1007/978-3-319-19458-5 5

26. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based function summaries
in bounded model checking. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC
2011. LNCS, vol. 7261, pp. 160–175. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34188-5 15

27. SPARK: (2014). http://www.spark-2014.org/

http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1145/1740582.1740584
http://dx.doi.org/10.1145/1740582.1740584
http://dx.doi.org/10.1007/11823230_2
http://dx.doi.org/10.1007/978-3-662-49674-9_56
http://dx.doi.org/10.1007/978-3-319-19458-5_5
http://dx.doi.org/10.1007/978-3-642-34188-5_15
http://dx.doi.org/10.1007/978-3-642-34188-5_15
http://www.spark-2014.org/

	Compositional Safety Refutation Techniques
	1 Introduction
	2 Preliminaries
	3 Compositional Verification and Refutation Overview
	4 Formalising Horizontal Compositional Refutation
	4.1 Monolithic Safety Refutation Problem
	4.2 Modular Safety Refutation Problem
	4.3 Modular Safety Refutation with Witnesses
	4.4 Worked Example

	5 Examples of Refutation Algorithms
	5.1 Concrete Backward Interpretation
	5.2 Abstract Backward Interpretation
	5.3 Symbolic Backward Interpretation

	6 Experiments
	7 Conclusion
	References


