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Abstract. We consider the problem of hypersafety verification, i.e. of
verifying 𝑘-safety properties of a program. While this can, in principle,
be addressed by self composition, which reduces the 𝑘-safety verifica-
tion task into a standard (1−)safety verification exercise, verifying self-
composed programs is not easy. The proofs often require that the func-
tionality of every component program be captured fully, making invari-
ant inference a challenge. Recently, a technique for property directed self
composition (or, Pdsc) was proposed to tackle this problem. Pdsc tries
to come up with a semantic self-composition function, together with the
inductive invariant that is needed to verify the safety of the self-composed
program. One of its crucial limitations, however, is that it relies on users
to supply a set of predicates in which the composition and the invari-
ant may be expressed. It is quite challenging even for a user to supply
such a set of predicates – the set needs to be sufficiently expressive, so
that the invariant can be expressed using those predicates (and their
boolean combinations), but not overly expressive to increase the search-
space unnecessarily. This paper proposes a technique to automate Pdsc
fully, by discovering new predicates whenever the given set is found to
be insufficient. We present three different approaches for obtaining pred-
icates – relying on syntax-guided synthesis, quantifier elimination, and
interpolation – and discuss the strengths and limitations of these.

1 Introduction

A hypersafety or a 𝑘-safety property is a program safety property whose vi-
olation needs at least 𝑘 program runs to be demonstrated. Determinism and
non-interference are common examples of such properties. A straightforward
way to transform a 𝑘-safety property into a usual (1-)safety property is self-
composition [7], in which 𝑘 memory-disjoint copies of the program are composed
with each other. Since the copies are memory-disjoint, the composition may be
thought of as an asynchronous parallel composition in which all interleavings
have the same behavior. Thus, a hypersafety property that holds in some inter-
leaving holds for all interleavings. A trace of such a composed program naturally
corresponds to an interleaving of 𝑘 traces of the original program, and that is
how self-composition reduces a 𝑘-safety property to a safety property.



As a technique, self-composition is both sound and complete for 𝑘-safety [39].
It also allows us to use the rich literature that exists for verifying (1-)safety
properties. However, verifying self-composed programs is not an easy exercise.
For instance, if the programs are composed sequentially, proving properties may
often require that the functionality of every component be captured fully, and the
required invariants can be difficult to obtain even for very simple programs and
properties. Since all interleavings (or compositions) behave similarly, it helps to
shift the focus of the problem on finding one which is easy to prove correct [18,39].

A recent technique of property directed self composition [39] addresses this
problem by appealing to this very insight – that the way the copies are composed
determines how complicated it is to verify the composed program. Note that
since the copies are memory-disjoint, all compositions are safe if any one of
them is proved safe. Informally speaking, Pdsc attempts to find an easy-to-
prove composition and prove that it is safe. It comes up with a semantic self-
composition function, together with the inductive invariant that is needed to
verify the safety of the program composed according to that function. Since this
problem is undecidable in general, it is made tractable by fixing a language of
proofs, described by a given set of predicates and their boolean combinations,
and navigating the space of all possible compositions to see if one of them can
be proved safe by finding an inductive invariant in this language. The algorithm
relies on the property that a transition system has an inductive invariant in a
language of predicates (and boolean combinations) if and only if its abstraction
using those predicates is safe. Thus, by using predicate abstraction, Pdsc either
obtains an inductive invariant or is able to prove that none exists in the given
language.

Interestingly, 2-safety verification is closely related to the task of checking
equivalence of two programs. Program equivalence is an important problem ow-
ing to its diverse applications, that include translation validation and compiler
correctness [31,24,29], code refactoring [35], program synthesis [4], hypersafety
verification [3,18,39], superoptimization [37,11], and programming and software
engineering education [26] amongst many others. Naturally, self-composition of-
fers a solution for this too, but verifying the composed programs can be quite
challenging. Consider, for example, two programs that sum all the numbers in
the range [1, 𝑛] – even if both the programs are iterating over the digits from
1 to 𝑛 and adding it to the sum, a sequential composition of these two pro-
grams requires non-linear inductive invariants to establish equivalence. An ideal
composition in this case would be one where the program statements (or loop
iterations) are composed statement by statement, i.e. in lock-step. The property
itself, that the two sums are equal, becomes an inductive invariant of the lock-
step composition. Thus, Pdsc becomes a useful technique for addressing the
problem of program equivalence as well.

An important caveat of Pdsc, however, is that it relies on users to supply a
set of predicates in which the composition and the invariant may be expressed.
It is quite challenging even for a user to supply such a set of predicates – the set
needs to be sufficiently expressive, so that the invariant can be expressed using



those predicates (and their boolean combinations), but not overly expressive to
increase the search-space unnecessarily. Therefore, it is crucial for the usefulness
of Pdsc that an automatic way of obtaining these predicates be devised and
developed. While there are techniques that can mine predicates (to construct
invariants) from program source [20,32,21,22], and Pdsc itself proposes to do
this in order to lessen the user-dependence, the necessary predicates may very
often be absent from the source code (our motivating example, for instance, in
Sect. 2). Another limitation of the Pdsc algorithm is that it only tries to find
an invariant that can establish the given 𝑘-safety property. If it fails in doing so,
it does not look for a counterexample (a refutation witness).

This paper proposes an algorithm that works on top of Pdsc, to i) auto-
matically enrich the set of predicates, when it realizes that the current set is
insufficient, till a proof is derived, and ii) look for a counterexample when it
cannot obtain a proof with a given set of predicates, so that new predicates are
added only if a refutation witness can also not be derived so far. Though ex-
plained later (in Sect. 3.4), the insufficiency of a given set of predicates emerges
as an abstract counterexample trace. This trace must be spurious if the property
holds, and if the property does not hold then it may correspond to an actual
concrete counterexample. Therefore, the purpose of new predicates is to cap-
ture the reason for spuriousness. We have designed two different approaches to
synthesize new predicates, one that uses a counterexample-guided method of
predicate refinement, and another one that obtains them as interpolants from
the infeasibility-proof of the counterexample trace. For the first approach, we en-
code the task as an abduction query, and solve it either using a Syntax-Guided
Synthesis (SyGuS) solver (with CVC4-1.8 [6]) or an SMT Solver (Z3 [15]). For
the second one, we compute interpolants using MathSAT5 [12]. An experimental
comparison of these techniques have been presented in Sect. 6.

The core contributions of this paper are:

1. An improvement of the Pdsc algorithm that not only makes it capable to
look for proofs as well as refutations, but also removes its user-dependence
and enables it to strengthen its proof language iteratively, on demand, in a
counterexample-guided way.

2. An implementation on top of Pdsc, with three different methods for deriving
new predicates – using a SyGuS solver, or an SMT solver, or an interpolating
prover. And an experimental comparison of these on several hypersafety
verification and program equivalence benchmarks from the literature.

Outline of the paper The rest of the paper is organized as follows. We start with
a motivating example in Sect. 2, and then move to the necessary background in
Sect. 3, which includes a description of the Pdsc algorithm that we build upon.
Sect. 4 talks about the challenges and the key contributions that we have made.
We describe our algorithm in Sect. 5, and the details of our implementation and
experiments in Sect. 6. Sect. 7 discusses the related work, and Sect. 8 contains
our concluding remarks.



2 Motivating Example

Consider the example shown in Fig. 1(a) and (b). This is a benchmark from [39];
for ease of understanding, we have presented it as two separate programs, and
refer to the underlying 2-safety property simply as an equivalence check. The
task is prove that these programs compute the same output value, given the
same input. This is indeed true; both the programs take an integer 𝑥 as input
and compute 2 * 𝑥2, although differently. The first program (v1) goes through
the while loop 2𝑥 times, adding 𝑥 to 𝑦 each time. The second program (v2) goes
through the loop only 𝑥 times, incrementing 𝑦 by 𝑥 each time, but doubles the
value of 𝑦 before it returns.

A self-composition approach that does a sequential composition in this case
would require that both the programs be completely analyzed individually before
the outputs can be compared. For example, one needs to synthesize invariants for
loops in both programs separately, which in this case are non-linear expressions:
(0 ≤ 𝑧 ≤ 2𝑥)∧ 𝑦 = 𝑥* (2𝑥− 𝑧) and (0 ≤ 𝑧 ≤ 𝑥)∧ 𝑦 = 𝑥* (𝑥− 𝑧), for the versions
v1 and v2 respectively.

dblSqr-v1(x){

y = 0;

z = 2 * x;

while (z > 0) {

z = z - 1;

y = y + x;

}

return y;

}

(a)

dblSqr-v2(x){

y = 0;

z = x;

while (z > 0){

z = z - 1;

y = y + x;

}

y = 2 * y;

return y;

}

(b)

Fig. 1: doubleSquare example, from [39]

An alternative approach could be to analyze their runs in an interleaved
fashion, up to selected “checkpoints” in each program. An advantage of using
such an interleaved composition for analysis is that the required invariants are
likely to be simpler because of the choice of the checkpoints as synchronization
points for interleaving. The checkpoints can be chosen where the outputs are
expected to be behaviorally equivalent, or if not, then at least there is a linear
relation between them. For instance, for the programs shown in Fig. 1, the
checkpoints can be added such that the components synchronized after every
two iterations of the loop in v1 and one iteration of the loop in v2. If this
happens, then at each synchronization point the value of 𝑦 in v1 will be double



that of 𝑦 in v2. After the loop exit, before the programs return, since v1 does not
run any instruction, while v2 multiplies its copy of 𝑦 by 2, it becomes evident –
by only tracking linear relation in the variables – that the programs are doing
the same thing.

The technical challenge in this approach lies in finding good synchronization
points, or equivalently, a suitable composition, that has an easy-to-find safe
inductive invariant. An additional challenge lies in that the expressiveness of
the proof language (i.e., the one in which invariants have to be searched) is
dependent on the choice of the composition candidate. In the next section, we
will understand how the Pdsc technique addresses these concerns, and discuss
the limitations and challenges that lie ahead.

3 Background

3.1 Programs, Safety Properties, and Invariants

Similar to [39], we model a program as a transition system that defines its
behavior. A transition system is a tuple 𝑇 = (𝑆,𝑅, 𝐹 ), where 𝑆 is a set of states,
𝑅 ⊆ 𝑆×𝑆 is a transition relation that specifies an arbitrary step in an execution
of the program, and 𝐹 ⊆ 𝑆 is a set of terminal states such that every terminal
state 𝑠 ∈ 𝐹 has an outgoing transition to itself and no additional outgoing
transitions (terminal states allow us to reason about pre-post specifications of
programs).

An execution (or trace) of the program is given by a sequence of states
𝜋 = 𝑠0, 𝑠1, ... such that for every 𝑖 ≥ 0, (𝑠𝑖, 𝑠𝑖+1) ∈ 𝑅. An execution is called
terminating if its corresponding sequence has the suffix 𝑠𝑖, 𝑠𝑖, .. for some 𝑠𝑖 ∈ 𝐹 ,
and the terminating execution is said to end at 𝑠𝑖.

We denote the set of variables by 𝑉 , and the transition relation by a formula
over 𝑉 ∪ 𝑉 ′ where post-states of transitions are over 𝑉 ′. We use sets of states
and their symbolic representation via formulas interchangeably.

We consider safety properties defined via a (pre, post) pair, where pre and
post are formulas over 𝑉 , representing sets of states. 𝑇 satisfies (pre, post) if
every terminating execution of 𝑇 that starts in a state that satisfies pre, ends at
a state that satisfies post .

An inductive invariant, for a transition system 𝑇 and a safety property given
as (pre, post), is a formula Inv such that the following conditions hold.

(1) pre ⇒ Inv , (2) Inv ∧𝑅⇒ Inv ′, (3) Inv ⇒ (𝐹 ⇒ post)

Inv ′ denotes the formula Inv with every variable replaced by its correspond-
ing primed version.

It is noteworthy that any inductive invariant satisfies the first two conditions,
while the last condition holds only for an invariant that is sufficiently strong to
discharge the given safety property. We sometimes refer to such an inductive
invariant, one that satisfies all the three conditions above, as a safe inductive
invariant, and even as a safety proof.



A 𝑘-safety property refers to 𝑘 interacting executions of 𝑇 , and is also given
by a (pre, post) pair, except that pre and post are defined over 𝑉1⊎ . . .⊎𝑉𝑘 where
𝑉𝑖 denotes the 𝑖

𝑡ℎ copy of program variables. Naturally, pre and post represent
sets of 𝑘-tuples of program states, and a specific 𝑘-tuple of states (𝑠1, . . . , 𝑠𝑘)
in the 𝑘-cartesian product of 𝑆 can be represented as a conjunction of formulas
over 𝑉1 ⊎ . . . ⊎ 𝑉𝑘. A terminal 𝑘-tuple of states is one in which all individual
states are terminal, and a 𝑘 execution is terminating if it ends at a terminal
𝑘-tuple of states. 𝑇 is said to satisfy a 𝑘-safety property (pre, post) if for every
𝑘 terminating executions that start in states 𝑠1, . . . , 𝑠𝑘 such that (𝑠1, . . . , 𝑠𝑘)
|= pre, it holds that they end at states 𝑡1, . . . , 𝑡𝑘 such that (𝑡1, . . . , 𝑡𝑘) |= post .

3.2 Abduction

Abductive inference [16] is a form of backward logical reasoning, to infer likely
hypothesis from a given conclusion. Formally, given an invalid implication 𝛤 ⇒
𝜑, abductive inference finds a formula 𝜓 such that 𝛤 ∧𝜓 ⇒ 𝜑 is valid, and 𝛤 ∧𝜓
is satisfiable.

Note that 𝜑 is a trivial solution but it is not useful because it completely disre-
gards our existing knowledge (of 𝛤 ). In this paper (as discussed later, Sect. 5.2),
we rely on SyGuS and SMT solvers for doing abductive inference.

3.3 Interpolation

Consider an unsatisfiable set of clauses which have been partitioned into two
sets, 𝐴 and 𝐵. An interpolant [13] 𝐼 for the pair (𝐴,𝐵) is a formula for which
the following hold:

– 𝐴⇒ 𝐼
– 𝐼 ∧𝐵 is unsatisfiable
– 𝐼 refers only to the common variables of 𝐴 and 𝐵.

Such an interpolant, for first-order theories can be generated in linear time [33]
from the resolution proof of unsatisfiability (of 𝐴 and 𝐵).

3.4 Property Directed Self Composition

Property directed self composition, or Pdsc, is a recent technique that combines
the search of invariants with that of a composition. It does this by fixing a
language of proofs, LP, described by a given set of predicates, P, and their
boolean combinations, and navigating the space of all possible compositions to
see if one of them has a proof in this language. Fixing the language not only
makes the search tractable, it also allows Pdsc to rely on the property that a
transition system has an inductive invariant in LP if and only if its abstraction
using P is safe. Therefore, by using predicate abstraction, it is possible with
Pdsc to either obtain an inductive invariant in LP, or prove that none exists.



The way Pdsc navigates through the composition space is by defining a
composition function f : S k → P({1..𝑘}), mapping each 𝑘-state to a non-empty
set of copies that are to participate in the next step of the self composed program.
This composition function is semantic, in that it does not necessarily depend
on what are the syntactic constructs used in the next step of the component
programs. This allows Pdsc to explore beyond syntactic compositions, which
may not always be possible or useful.

Given a composition function 𝑓 , Pdsc creates a composed transition relation
𝑇 𝑓 = (𝑆𝑘, 𝑅𝑓 , 𝐹 𝑘), where the set of states consists of all 𝑘-states, the terminal
states are those in which all individual states are terminal, and 𝑅𝑓 includes a
transition from (𝑠1, ..., 𝑠𝑘) to (𝑠′1, ..., 𝑠

′
𝑘) if and only if 𝑓(𝑠1, ..., 𝑠𝑘) =𝑀 , and

(∀𝑖 ∈𝑀. (𝑠𝑖, 𝑠
′
𝑖) ∈ 𝑅) ∧ (∀𝑖 /∈𝑀. 𝑠𝑖 = 𝑠′𝑖).

Intuitively, the composition function tells, for any state, what are the copies
that are scheduled to move next, and the composed transition relation ensures
that the components move as per their individual transition relation in the copies
that are scheduled to move, and not move at all in any other copy.

Algorithm 1 Property Directed Self Composition

1: F𝑏𝑙𝑜𝑐𝑘 ← ∅
◁ block compositions that cannot be proved safe

2: 𝑓 ← lockstep
3: while true do
4: T𝑓 = compose(𝑓, 𝑇1, . . . , 𝑇𝑘)

5: AT𝑓

P = abstract(T𝑓 ,P)

6: (res, inv , cex ) = isBadReachable(AT𝑓

P , pre, post)
◁ where bad is negated post

7: if (res = safe) then
8: return (𝑓, inv)
9: else
10: F𝑏𝑙𝑜𝑐𝑘 ← F𝑏𝑙𝑜𝑐𝑘 ∪ {𝑓} ◁ block 𝑓 to get rid of cex
11: if (not all compositions are blocked) then
12: 𝑓 ← pickUnblockedComposition(F𝑏𝑙𝑜𝑐𝑘)

◁ try a different, unblocked, composition
13: else
14: return (no proof in the language of P)

Algorithm 1 presents an overview of how Pdsc works. The composition is set
to lockstep in the beginning, and the composed transition relation is obtained
and abstracted with the given set of predicates. If the abstraction is found to be
safe, at any stage, the algorithm returns a composition-invariant pair; otherwise,
the composition is modified and the process is repeated. If none of the compo-
sitions succeed, the algorithm concludes that no invariant, which is a boolean
combination of these given predicates, is inductive and safe. In other words, ei-



ther the language is not rich enough to capture a safety proof for any of the
compositions, or the program is not safe.

We have presented only a brief overview of the Pdsc algorithm, with the aim
of making this paper self-contained. We refer the interested readers to [39] for a
detailed discussion.

3.5 Revisiting our Motivating Example

Let us recall the example shown in Fig. 1. We argued earlier that the loops in the
two programs may be synchronized such that for every two iterations of the loop
in the first one, we run only one iteration of that in the second one. This way
of composing the loops of the two programs gives us a simpler loop invariant:
𝑦1 = 2*𝑦2. The way Pdsc arrives at this composition automatically is by fixing a
proof language, and then by searching among the possible compositions allowed
by the language.

Fig. 2 shows the composition and the proof obtained automatically by Pdsc,
for our motivating example. Intuitively, Pdsc takes the input set of predicates
(defining the proof language), and uses it to construct abstract states for every
(consistent) combination of predicates and their negation. And then it explores
transitions, labelled by the program copies whose next statement/block has to
be executed, between these states to find a path to a final state where the
property holds (e.g. the rightmost state in Fig. 2). Clearly, the search depends
on the input set of predicates. For this example, Pdsc expects four predicates
from the user (without which it would not have been able to construct the three
states shown in Fig. 2 and discharge the proof): z1==2*z2, y1==2*y2, z1==2*z2-1,
and y1==2*y2+x2. Note that the predicates y1==y2 and x1==x2 are available as
the postcondition and precondition respectively, and thus need not be supplied
externally.

z1==2*z2
y1==2*y2

x1==x2

z1==2*z2-1
y1==2*y2+x2

x1==x2

y1==y2

{v1}

{v1,v2}

{v2}

Fig. 2: Composition and proof obtained by Pdsc, for the example in Fig. 1

4 Challenges and Contributions

We look at the important caveats of Pdsc– i) it works for finding proofs but
cannot detect real counterexamples, ii) it requires a set of predicates supplied



externally, and iii) it cannot make progress if the supplied predicates are found
to be insufficient to express a safe inductive invariant. The following key com-
ponents of our algorithm helps us overcome these limitations.

1. spuriousness checker, to obtain a real counterexample trace if the programs
do not satisfy the desired 𝑘-safety property (or, in our case, behave differently
for the same input)

2. predicate synthesizer, to eliminate spurious counterexample traces and to
enrich the language for finding safe invariants.

It is noteworthy that since Pdsc works by checking safety of an abstraction
of the composed transition relation, it may be possible to do the above by inter-
facing Pdsc with a predicate-abstraction engine that can supply the predicates
for refinement. However, interfacing with a black-box engine is not very useful
because these predicates define the language of proofs, which in turn, decides
the complexity of the composition-invariant search, and therefore it is important
to have control on their quality and quantity to get a scalable solution.

We describe our algorithm formally in the next section, along with the details
of the two components that we have added, and a proof that our algorithm works.

5 Algorithm

Algorithm 2 presents a pseudo-code of our approach, which enhances the original
Pdsc algorithm (shown in Algorithm 1) with the ability to synthesize predicates,
to strengthen the language of proofs whenever necessary. In particular, the pro-
posed enhancement is captured in lines 14-20, that i) returns the counterexample
(𝑐𝑒𝑥) generated in line 7 if it is indeed a feasible trace by using a 𝑠𝑝𝑢𝑟𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠
check (lines 14 and 15), ii) adds a predicate to refine the counterexample if spu-
rious (lines 18 and 18), and iii) resets the composition space and restarts the
search from the lockstep composition (lines 19 and 20).

The next two subsections describe the two procedures – isSpurious and
synthesizePredicates – mentioned in the algorithm.

5.1 Spuriousness Check

The counterexample obtained in line 7 of Algorithm 2 is essentially a sequence
of abstract states that end in a bad state, i.e., a state that violates the post .
Each abstract state is defined by a valuation of all the predicates in P. Let us
denote this sequence of abstract states as: 𝐴0, 𝐴1, . . . , 𝐴𝑏𝑎𝑑. These states, in the
counterexample trace, are connected by a transition relation which is defined by
the transition relations of the component programs, and the current composition
function. We start by taking a concrete initial state 𝑐0, a model of 𝐴0, and then
applying the transitions of the trace on 𝑐0 step by step. After taking the 𝑖𝑡ℎ step,
it is checked that the concrete target state arrived at, let us call it 𝑐𝑖, is actually
a model of the corresponding abstract state 𝐴𝑖. If this indeed holds all the way



Algorithm 2 Pdsc with Predicate Synthesis

1: F𝑏𝑙𝑜𝑐𝑘 ← ∅
◁ block compositions that cannot be proved safe

2: 𝑓 ← lockstep
3: while true do
4: T𝑓 = compose(𝑓, 𝑇1, . . . , 𝑇𝑘)

5: AT𝑓

P = abstract(T𝑓 ,P)

6: (res, inv , cex ) = isBadReachable(AT𝑓

P , pre, post)
◁ where bad is negated post

7: if (res = safe) then
8: return (𝑓, inv)
9: else
10: F𝑏𝑙𝑜𝑐𝑘 ← F𝑏𝑙𝑜𝑐𝑘 ∪ {𝑓} ◁ block 𝑓 to get rid of cex
11: if (not all compositions are blocked) then
12: 𝑓 ← pickUnblockedComposition(F𝑏𝑙𝑜𝑐𝑘)

◁ try a different, unblocked, composition
13: else
14: if (isSpurious(cex ) is false) then
15: return (unsafe, cex )
16: else ◁ cex is spurious
17: P′ ← synthesizePredicates(cex )

◁ new predicates that eliminate cex

18: P = P ∪ P′ ◁ strengthen the language of proofs
19: F𝑏𝑙𝑜𝑐𝑘 ← ∅ ◁ unblock the blocked compositions
20: 𝑓 ← lockstep ◁ restart, with lockstep composition

up to 𝐴𝑏𝑎𝑑, then we have an actual counterexample trace. Otherwise, there must
be a transition ⟨𝐴𝑖, T

𝑓 , 𝐴𝑖+1⟩ in the abstract trace that could not be taken by
the concrete state 𝑐𝑖 (i.e., 𝑐𝑖+1 ∧ 𝐴𝑖+1 was unsat), where 𝑐𝑖+1 is the concrete
state reached after taking T𝑓 from 𝑐𝑖, and T𝑓 is the composed transition relation
as per the current composition function 𝑓 .

Intuitively, this means that it is not possible to go from a part of 𝐴𝑖 (that
part exists, because we know that 𝑐𝑖 belongs to it) to 𝐴𝑖+1 along the composed
transition relation. Therefore, in order to refine this spuriousness, it is necessary
to add a predicate that identifies the part. The goal of the synthesizePredicates
procedure is to find such a predicate.

5.2 Synthesizing Predicates from Counterexamples

We illustrate how a spurious transition of the form ⟨𝐴𝑠𝑟𝑐, T
𝑓 , 𝐴𝑡𝑔𝑡⟩, where T𝑓

is the composed transition relation and 𝐴𝑠𝑟𝑐 and 𝐴𝑡𝑔𝑡 are the source and tar-
get states, is blocked by doing a counterexample-guided abstraction refinement.
The problem of blocking a spurious transition is essentially a problem of logical
abduction [17], which works towards finding an explanatory hypothesis for a



desired outcome. The desired outcome here is that 𝐴𝑡𝑔𝑡 should not be reachable
along T𝑓 from 𝐴𝑠𝑟𝑐, but currently it is. In other words,

𝐴𝑠𝑟𝑐(𝑉 ) ∧ T𝑓 (𝑉, 𝑉 ′) ⇏ ¬𝐴𝑡𝑔𝑡(𝑉
′)

Therefore, we need to find a hypothesis, 𝑝(𝑋), possibly over a subset of
variables, i.e. 𝑋 ⊆ 𝑉 , such that

𝑝(𝑋 ⊆ 𝑉 ) ∧𝐴𝑠𝑟𝑐(𝑉 ) ∧ T𝑓 (𝑉, 𝑉 ′) ⇒ ¬𝐴𝑡𝑔𝑡(𝑉
′)

But, at the same time, it is important to discard trivial solutions – one that
uses the consequent itself as 𝑝, and another that makes the antecedent false.
Therefore, the abducer looks for a minimal (logically weakest) solution under
the condition that

𝑝(𝑋 ⊆ 𝑉 ) ∧𝐴𝑠𝑟𝑐(𝑉 ) ∧ T𝑓 (𝑉, 𝑉 ′) ⇏ ⊥

We use the following two ways to solve for 𝑝.

Using a SyGuS solver We encode these constraints directly into the SyGuS
input language [34], and use CVC4 [6] (version 1.8) to obtain a solution. SyGuS
allows an enumerative search strategy that leads to smaller predicates.

Quantifier Elimination using Z3 A solution to the abductive inference prob-
lem is given by

∀ ((𝑉 ∪ 𝑉 ′) ∖𝑋). 𝐴𝑠𝑟𝑐(𝑉 ) ∧ T𝑓 (𝑉, 𝑉 ′) ⇒ ¬𝐴𝑡𝑔𝑡(𝑉
′)

or, equivalently, by the negation of

∃ ((𝑉 ∪ 𝑉 ′) ∖𝑋). 𝐴𝑠𝑟𝑐(𝑉 ) ∧ T𝑓 (𝑉, 𝑉 ′) ∧𝐴𝑡𝑔𝑡(𝑉
′)

We obtain a solution by quantifier elimination using Z3 [14]. Since we are
looking at the problem of predicate refinement, it is not necessary to negate the
solution (negating a predicate does not affect the expressiveness of our proof
language in any way).

Given an input program and a safety property specified as (pre, post), and
an initial proof language – defined by predicates that are needed to specify pre
and post and their boolean combinations – Algorithm 2 either terminates with a
proof, or a counterexample, or goes on enriching the language of proofs, in each
iteration making it provably more expressive than the earlier one. The algorithm
is not guaranteed to terminate, since the problem of finding the composition-
invariant pair is undecidable in general [39]. It can, in principle, terminate for
finite state systems, although with exponential complexity, since the set of pos-
sible composition-invariant pairs is itself finite for finite state systems. Note the
number of predicates is also finite in a finite-state systems.



Theorem 1. The proposed refinement ensures progress, i.e., the predicate added
in every step, which is the solution of the abduction query, gets rid of the spurious
counterexample, and strictly strengthens the proof language.

Proof. It is easy to see that the refinement indeed removes the spurious coun-
terexample, because the queries given to SyGuS solver and to Z3 exactly encode
this constraint that the target should not be reachable from the source. We also
know that a solution certainly exists, because the concrete state corresponding
to the 𝐴𝑠𝑟𝑐 is itself a non-trivial solution.

To argue that the newly added predicate 𝑝𝑛 (say) strictly enriches the proof
language given by P = {𝑝1, . . . , 𝑝𝑛−1}, let us assume, on the contrary, that it does
not. In that case, 𝑝𝑛 can be written as a boolean combination of the predicates
in P. Since 𝐴𝑠𝑟𝑐 is also a boolean combination of predicates in P, they (𝐴𝑠𝑟𝑐 and
𝑝𝑛) must either agree on all predicates in P or disagree on at least one of them.
The latter is not possible since this disagreement would mean that abduction
problem was solved trivially by falsifying the antecedent, however we know that
it is not true because trivial solutions are avoided. On the other hand, if they
agree on all the predicates {𝑝1, . . . , 𝑝𝑛−1} then 𝐴𝑠𝑟𝑐 ∧ 𝑝𝑛 is simply 𝐴𝑠𝑟𝑐 and the
spuriousness could not have been removed. Hence, a contradiction.

The soundness of our algorithm follows directly from the soundness of Pdsc.

5.3 Obtaining Predicates from Infeasibility Proofs

As described in Sect. 5.1, an abstract counterexample trace is a sequence of
transitions that begin at the initial abstract state and end at a bad state. Note
that the transitions in such a trace are labelled by program statements from
the two (or more) program copies/components. To check whether an abstract
trace is feasible, we can collect the program statements from the transitions of
the entire trace, and give it to a solver to check for satisfiability. This gives
us an alternate, more general way to check if the abstract counterexample was
spurious, independent of any concrete initial state.

If the solver returns sat, we get an actual counterexample trace as a model,
which demonstrates that the desired property fails to hold. However, if the solver
returns unsat, then the sequence interpolants [28] obtained from the infeasibility
proof (of the concrete trace) may be used as additional predicates to strengthen
the proof language. Although at this point it would be sound to add all the
interpolants as predicates to strengthen the proof language, it must be noted
that the search of a proof gets more and more difficult as the proof language
gets richer (because the number of abstract states is exponential in the number of
predicates, and Pdsc searches through the states to find a composition-invariant
pair). Therefore, there is a downside to making the proof language needlessly
expressive – the search of a composition-invariant pair will become considerably
harder in every iteration. A practical solution, naturally, is to add only a few
interpolants or even sub-expressions from what the prover gives us. In particular,
our implementation:



– is parametrized to add at most 𝑝 predicates each time (in our experiments,
we use 𝑝 = 2)

– prioritizes expressions that relate variables that have not been related so far
in the existing set of predicates

– prioritizes adding shorter and logically stronger expressions.

Note that this approach is still sound, though we cannot guarantee now that
the newly added predicates necessarily remove the spurious counterexample.
Adding all the interpolants obtained from the infeasibility proof would certainly
eliminate the counterexample, but it will make the algorithm quite inefficient.
Our experiments support that the compromise of adding only a few interpolants,
or sub-expressions derived from them, is indeed very useful in practice.

6 Implementation and Experiments

6.1 Implementation

We have implemented our approach in a tool5, PdscSynth, which is built on the
Pdsc tool6. Like Pdsc, our input is a transition system encoded by Constrained
Horn Clauses (CHC) in SMT2 format, a correctness (𝑘-safety) property, and a
set of predicates that specify the pre and post conditions. While Pdsc expects an
additional set of predicates (that may be mined automatically from the program
syntax, or supplied manually), PdscSynth gets them automatically, lazily on
demand, by doing:

1. Syntax-Guided Synthesis, using CVC4 [6], version 1.8
2. Quantifier Elimination, using Z3 [14], version 4.8.9, and
3. Craig Interpolation, using MathSAT5 [12], version 5.6.6.

In CVC4, we use restrict ourselves to Linear Integer Arithmetic (which is
what our benchmarks are also restricted to), and use the default grammar that
CVC provides for LIA. The variables and the constants for the grammar come
from the program. Quantifier elimination is performed using the recursive QSAT
technique [8], available in Z3 tool.

6.2 Benchmarks

An interesting use-case of 2-safety verification is automated evaluation of pro-
gramming assignments which may be done by checking equivalence between a
submitted program and a reference solution. With this in mind, we have used
9 programming assignments samples in our experiments, derived from [26]. In
addition, our benchmarks consists of 7 examples derived from [39], and 3 crafted
examples. Each benchmark consists of two component programs (that may be
copies, or syntactically/semantically different programs), and the correctness

5 Artifacts available at: https://github.com/Akshatha-Shenoy/PdscSynth
6 https://bitbucket.org/sharonsh/pdsc/src/master/

https://github.com/Akshatha-Shenoy/PdscSynth
https://bitbucket.org/sharonsh/pdsc/src/master/


property is stated as a set of pre- and post-conditions. Intuitively, we check the
equivalence property for all the benchmarks, except in case of squareSum where
the components compute the sum of squares of integers in a given interval, and
the property is that a bigger interval leads to a bigger sum.

We call a benchmark safe if the composed programs in the benchmark satisfy
the given correctness property, and unsafe otherwise. Since the sample program-
ming assignment solutions include correct as well as incorrect solutions, we have
6 unsafe benchmarks and 3 safe ones. The benchmarks derived from the Pdsc
paper are all safe, and we got them by deleting all the manually supplied pred-
icates (excluding those predicates that are necessary to specify the pre- and
post-condition). For the doubleSquare benchmark, we also created instances of
varying difficulty by retaining some of the manually supplied predicates. The
crafted benchmarks were obtained from two different programs: one that sums
all numbers from 1 to n (a safe and an unsafe version), and another one that
increments two equal numbers by different values and then decrements them by
the same value to get equal numbers in the end again (safe version).

6.3 Results

We ran PdscSynth on all the 19 benchmarks described above. Table 1 shows
the results of our experiments. The columns SyGuS, QE, and Interpolation con-
tain, except in case of timeouts, two comma-separated entries – the number of
predicates synthesized on the left, and the time taken to produce a proof (or a
counterexample) on the right. The letters ‘m’ and ‘s’ denote minutes and sec-
onds, respectively. The experiments were run on an Intel i5 machine running at
1.70 GHz, with 16 GB of RAM. The ‘timeout’ indicates that the technique could
not decide the benchmark within 10 minutes.

It is noteworthy that interpolation was able to produce the desired predicates
in every case. The time taken and the predicates added by the interpolation
technique confirm that the technique was effective (in its selection of predicates
to add, so that the proof language becomes richer but not needlessly expres-
sive). In several unsafe benchmarks (fig4 1, fig4 2, subsume 1, subsume 2 and
puzzle 1), interpolation needed fewer predicates in comparison to QE and Sy-
GuS. This is because with SyGuS and QE, we check the spuriousness of one
concretization of the abstract trace at a time, unlike in case of interpolation
where all possible concretizations are checked at once. Thus, interpolation adds
a predicate only when none of the concretizations of an abstract trace is feasi-
ble. Whereas, QE and SyGuS may add a predicate needlessly even though the
current abstract trace has a feasible concretization (which hasn’t been looked at
yet).

The quantifier elimination with Z3 was also able to get the necessary and
sufficient predicates in a larger number of cases (in particular, where SyGuS
could not scale). For the examples where SyGuS also worked, it almost always
got smaller predicates than QE, though not necessarily fewer in numbers (for
sum pc, SyGuS had to synthesize four more predicates as compared to quantifier
elimination, whereas for inc dec SyGuS managed with two predicates lesser).



The quantifier elimination with Z3 performed quite well in comparison to in-
terpolation as well, solving all the benchmarks except halfSquare and most of
doubleSquare variants. However, the proofs generated with QE were often quite
big, as the technique obtained predicates that were much bigger in size compared
to SyGuS and Interpolation.

Table 1: No. of predicates synthesized, and the time taken by SyGuS (Syntax-Guided Synthesis,
using CVC4-1.8), QE (Quantifier Elimination, using Z3 4.8.9), and Interpolation (using MathSAT5

5.6.6), and a comparison with LLRÊVE on our benchmarks

S. No. Benchmark Source Safe/Unsafe
SyGuS

(#pred, time)
QE

(#preds, time)
Interpolation
(#preds, time)

LLRÊVE

1. sum to n crafted safe timeout 8, 1m32s 3, 17.36s 0.056s

2. sum to n err crafted unsafe 0, 0.34s 0, 0.77s 0, 1.43s 0.069s

3. inc dec crafted safe 2, 9.15s 4, 20.95s 3, 13.95s unknown

4. squareSum cav19 safe 0, 0.66s 0, 1.14s 0, 1.67s –

5. sum pc cav19 safe 5, 1m32s 1, 13.58s 4, 1m28s unknown

6. fig4 1 icse16 unsafe 1, 3.65s 2, 7.16s 0, 2.26s 0.038s

7. fig4 2 icse16 unsafe 1, 3.86s 2, 7.24s 0, 2.27s 0.067s

8. fig4 ref ref icse16 safe 0, 0.11s 0, 0.58s 0, 0.96s 0.044s

9. subsume 1 icse16 unsafe timeout 3, 7.88s 0, 2.20s 0.041s

10. subsume 2 icse16 unsafe timeout 2, 5.22s 0, 2.24s 0.061s

11. subsume ref ref icse16 safe timeout 1, 3.9s 8, 24.48s 0.051s

12. puzzle 1 derived from icse16 unsafe timeout 4, 26.8s 2, 9.04s 0.040s

13. puzzle 2 derived from icse16 unsafe timeout 8, 2m31s 8, 4m7s 0.029s

14. puzzle ref ref derived from icse16 safe timeout 2, 10.33s 1, 5.73s 0.061s

15. halfSquare cav19 safe timeout timeout 3, 6m9s unknown

16. doubleSquare 1 derived from cav19 safe timeout timeout 11, 3m42s timeout

17. doubleSquare 2 derived from cav19 safe timeout timeout 10, 3m14s timeout

18. doubleSquare 3 derived from cav19 safe timeout timeout 7, 1m50s timeout

19. doubleSquare 4 derived from cav19 safe 4, 1m19s 9, 3m26s 1, 17.12s timeout

6.4 Performance on our Motivating Example

Let us recall our motivating example once again. As described in Sect. 3.5, Pdsc
was able to construct a proof with the help of four user-supplied predicates:
z1==2*z2, y1==2*y2, z1==2*z2-1, and y1==2*y2+x2. We created four variants
of this benchmark: doubleSquare 1 (where none of these four were supplied),
doubleSquare 2 (where only z1==2*z2 was supplied), doubleSquare 3 (where
z1==2*z2 and y1==2*y2 were supplied), and doubleSquare 4 (where y1==2*y2
was removed, the other three were supplied). As shown in the results table, Pdsc-
Synth was able to solve all the four benchmarks using Interpolation, whereas
none of the other techniques could work even for the simpler variants (except
doubleSquare 4 which could be solved but needed more predicates and a lot
more time with SyGuS and QE).

6.5 Comparison with LLRÊVE

We also compared PdscSynth with LLRÊVE7 , an automated regression verifi-
cation tool, as it can automatically check programs for equivalence [23]. Table 1

7 https://formal.kastel.kit.edu/projects/improve/reve/

https://formal.kastel.kit.edu/projects/improve/reve/


shows the results of this comparison; we used both Z3 v4.8.9 and Eldarica v2.0.8
as the backend solver, and have reported the better of the two results. While
LLRÊVE could solve all the unsafe benchmarks fairly quickly, the only safe
benchmarks that it could solve were the ones for which the components were ex-
actly the same. There were four such benchmarks in our experiments: sum to n,
and the * ref ref benchmarks where reference implementations for program-
ming assignments were compared to themselves. For all other safe benchmarks,
LLRÊVE could not decide that they were indeed safe, even though we let it
run beyond the timeout for about 30 minutes. Also, note that we could not run
LLRÊVE on the squareSum benchmark because the safety property there is not
an equivalence check.

6.6 Reducing Predicate Size for Quantifier Elimination

In order to discover smaller predicates as solutions, we implemented a strategy
for Z3 to eliminate as many variables as possible, and return a solution in the
smallest set of variables possible, under the broad assumption that predicates
in fewer variables would also be smaller. This is not always true; in fact, we
realized that it is better to eliminate all but two variables to begin with, and
come to eliminating all but one variable only in the end. In general, while this
strategy helps in reducing the size of predicates, such strategies can impact the
performance adversely. Striking a good balance between scalability and useful-
ness of the predicates, therefore, is crucial, and makes for an important direction
of future work.

7 Related Work

The novelty of our work lies in giving a completely automatic approach for doing
property directed self composition [39] to address the problem of 𝑘-safety veri-
fication. While the user-dependence has been described here as a problem only
for Pdsc, related techniques like [9] are also dependent on predicates that may
be used to align the component programs. In particular, [9] uses an alignment
predicate to construct a program alignment automaton that semantically aligns
the programs between which equivalence is to be checked, quite like how Pdsc
composes the component programs. The predicates play an important role in
these techniques, and therefore it is crucial to have techniques that can generate
useful predicates completely automatically.

Since self-composition poses the same challenges for proving equivalence of
programs as it does for 2-safety verification, an automated property directed
self composition technique can be helpful in a number of applications of pro-
gram equivalence. This includes evaluation of programming assignment w.r.t.
a given correct implementation [3], semantic alignment [10], translation valida-
tion [40,25], design and verification of compiler optimizations [41,30], and pro-
gram synthesis and superoptimization [5,38], among several others. We reiterate



that it is the combined strength of Pdsc and the automation that makes this
approach usable and effective in practice.

Our method relies on different techniques for synthesizing predicates: Sy-
GuS [2], Abductive inference [16], and Interpolation [27]. These techniques are
certainly related in the way they can address a common problem, which in our
case is the strengthening of the proof language. They have also been used to-
gether, sometimes in conjunction with other techniques, to address related prob-
lems like inferring inductive invariants [19,22] and maximal specifications [1,36].
The commonality of the techniques, which makes them suitable for these prob-
lems, is their ability to generalize (from examples or counterexamples). Whereas,
they differ in how they perform the generalization, and thus have different
strengths as confirmed by our experiments.

8 Conclusion and Future Work

This paper proposes an algorithm that builds on top of a property directed self
composition technique for hypersafety verification, and overcomes some of its
important caveats. Pdsc expects users to supply a proof language in which it
searches for an easy-to-prove composition. Our algorithm gets rid of the user-
dependence that Pdsc has, and makes it capable to do refutations as well. We
have implemented, and experimented with three different techniques relying on
SyGuS, Quantifier Elimination, and Interpolation, that can construct and enrich
the proof language as and when required for a given program and a property.
Our experiments demonstrate that the proposed techniques are effective as well
as efficient.

Looking ahead, we see several interesting directions of future work. For one,
since the space of compositions is navigated repeatedly, it may be useful to iden-
tify good and bad regions of the composition space each time, and use it in
subsequent iterations to scale better. However, this is challenging as the compo-
sition space changes every time the proof language is strengthened. For certain
applications, e.g. while proving equivalence of programs, it may be desirable to
obtain proofs that are shorter and thus easier to understand. Therefore, the task
of finding smaller, and few but useful predicates is an important one, and makes
for an interesting future work. It would also be worthwhile to enhance our tech-
nique to handle programs with arrays and other data-structures so that we can
look at a wider set of benchmarks.
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