
Trace Based Reachability Verification for Statecharts
Kumar Madhukar, Ravindra Metta, Ulka Shrotri, R. Venkatesh

TRDDC, Tata Consultancy Services,
Plot 54 B, Hadapsar Industrial Estate, Pune 411013. India
{kumar.madhukar|r.metta|ulka.s|r.venky}@tcs.com

Abstract—Statecharts are widely used to model the behavior
of reactive systems. While this visual formalism makes modeling
easier, the state of the art in verification of statechart specifi-
cations is far from satisfactory due to the state explosion prob-
lem. We present History Abstraction, a trace-based verification
technique to address this problem. Given a set of traces in a
statechart model, the model is abstracted to contain at most
three states per statechart: current, history and future. A path
to a desired state in the abstract model is a sketch of a potential
path to that state in the original model. We follow an incremental
concretization procedure to extend the sketch to a complete path
in the original model. This paper presents our technique. Our
experiments suggest that the technique scales to large industry
models.

I. INTRODUCTION

The use of formal specification notations such as Statemate
statecharts [1] has been on the rise for the specification of
embedded reactive systems. Such expressive visual formalisms
make modeling easier and facilitate early verification and
validation of requirements through formal analysis. Model
checkers are widely used for the verification of standard
properties such as state reachability and data racing of the
formal models. Industry models typically have a large number
of concurrent components causing the state-space to grow
exponentially. Due to this state explosion problem, model
checkers often do not scale to real world models [2]. In this
paper, we present what we believe to be the first trace-based
verification technique aimed at containing the state explosion
problem for Statemate statecharts.

Given a Statemate statechart model M and a set of traces
Tr, our basic motive is to try to extend the traces to reach the
states that are not reached in any of them. Note that, one can
easily obtain a seed Tr by running a bounded model checker
with a small depth for state reachability or by using the traces
produced by production test data, etc. From the set of traces,
we select a trace that has an unreached state as an immediate
successor of the last reached state in the trace. We call such
a trace as a candidate trace.

Given a candidate trace, we construct MA, an abstract
model of M that contains at most three states per statechart.
For each statechart S in M , these three states are:
• C, the current state - the last reached state of S in the

candidate trace. C is also the initial state of MA.
• H , the history state - corresponding to the set, say Sr, of

all states of S reached in Tr except C.
• F , the future state - corresponding to the set, say FS , of

immediate successor states of C unreached in Tr.

We set the initial system state of MA to the last system
state of the candidate trace. Since F represents an unreached
set of states, we would like to verify the reachability of each
F in MA. For this, we add all those transitions of M to MA

that directly impact the reachability of a state represented by
F (except in some cases, explained in Section 3.1). We do not
add some transitions to the abstract model as they can never be
taken starting from C without reaching a state represented by
F . Further, for each impacting transition added to the abstract
model:
• we retain only those parts of the transition’s actions that

impact F ’s reachability and discard the rest
• if the transition’s source and target states are already

reached, but neither is C, we discard the guards
Reactive systems tend to have long dependence chains

due to their very nature. The intuition behind the above
construction of MA is to limit this dependency.

Next, we run a model checker with a bound k on MA to
obtain a trace to F . If no trace is found, it means that the
candidate trace does not extend from C to any state in FS in
M , in the next k steps. If a trace does exist, the transitions that
constitute the trace represent a ‘set’ of transitions where each
transition represents a potential path segment of a path in M
from C to a state in FS . Intuitively, the trace constitutes a set of
‘likely’ transitions in M that help reach a state in FS . We then
try to find a concrete path-segment to each transition in the
set using an incremental concretization procedure, exploring
these transitions in a depth-first manner. The composition of
these path segments, prefixed with the candidate trace, forms
a concrete path in M .

This technique is expected to scale because the size of MA

is likely to be significantly smaller than the size of M and, at
each point of time during the concretization, we incrementally
construct individual concrete path segments as opposed to
complete concrete paths. However, the following factors are
expected to hinder its scalability. Firstly, the concretization
may require many iterations . Secondly, the performance of
the technique is directly impacted by the quality of the seed
set of traces. In particular, if a candidate trace could not be
extended to a desired future state at a given depth, the trace
may still be extensible to the state at a higher depth. And,
another candidate trace may also be extensible to the desired
state. Thus, we need to try all candidate traces of a given set
of traces at the largest feasible depth before we give up.

To check the practicability of the technique, we imple-
mented it in an in-house statechart verification tool [3] and

978-1-4673-6292-4/13/$31.00 c© 2013 IEEE FormaliSE 2013, San Francisco, CA, USA22



experimented on a large automotive model. In our experiments,
the technique scaled verification to show reachability of hither-
to unreached states in a large industry model, suggesting that
our technique is useful in practice.

The rest of the paper is organized as follows. We give
the relevant work in Section II and background information
on Statemate statecharts and SAL in Section III. Sections
IV-A and IV-B present the abstraction and concretization
techniques respectively. Section V presents our experimental
results. The paper concludes with some remarks and future
work in Section VI.

II. RELATED WORK

Zhang et. al [4] propose a ‘dynamic abstraction’ that applies
the information gathered from an unsatisfiability proof to
create an abstraction during successive steps of their model
checking algorithm. In contrast we use a given set of unsatis-
fiability proofs (traces) to construct an abstract model, which
is then used to extend the traces to desired future states. In an
earlier work, Bischoff et al. [5] proposed another ‘dynamic
abstraction’ technique that builds an under-approximate set
of reachable states using a breadth-first traversal of a corre-
sponding BDD, which is then used to perform a SAT-based
verification. In contrast, we use a known set of reachable states
and their corresponding traces, which we then use to perform
a SAT-based verification. In contrast to both these ‘dynamic’
abstractions, our trace-based abstraction is ‘dynamic’ with
respect to the set of traces.

Concolic test generation for Simulink/Stateflow models [6]
employs directed traversal from a point already reached and
uses feedback from a current run to obtain the future part of
the run. In comparison, our technique first constructs a smaller
abstract model from the set of already reached points from a
given set of runs and then extends the runs on the abstracted
model.

Finally, the words ‘history’ and ‘future’ have been used
earlier by Abadi et. al. in [7] in the context of mapping
from a concrete model to a abstract model. In this work,
new auxiliary variables called history and prophecy variables
are added in an additional component to a state machine.
History variables record past behavior and prophecy variables
guess future behavior. In comparison, we use already recorded
history (traces) to build a smaller abstract model, which we
then use to guess a path to a future state and concretize the
guess to a complete path on the original models.

III. BACKGROUND

A. Statemate

Statecharts are extensions of conventional state transition
systems. The main extensions are hierarchy and concurrency.
A transition is an edge between two states, labeled with
e[c]/a, where e is an event (also called a trigger), c is a
condition (also called a guard) and a is an action. A transition
e[c]/a is enabled if its source state is active, event e occurs,
condition c holds true and no higher priority transition is
enabled. In Statemate, transitions exiting higher level states

SC1

s10 s11 s12

s13s14

t10 :

t11 : / i:=0; j:=0;
t12 : [k<3]

t13 : e2 / j:=1;

t14 : E1 / e1

t15 : E3 [k>2] / i:=i+1;t16 : E2 [i<30]

t17 : e1 [j==1] / e2 ;

t
1
8

:e
2

(a) SC1

SC2

s20 s21 s22

s23s24

t20 :

t21 : / k:=0;
t22 : E4 / k:=k+1;

t23 : [k<6]

t24 : [k>5] / j:=1; e1 ;

t25 : E5 [k<10]t26 : E6 [j==0]

t27 : e1 [k>15] / e2 ;

t
2
8

:e
2

(b) SC2

Fig. 1. A Sample Statechart Model

in the hierarchy assume higher priority. Whenever a transition
is taken, the corresponding action a is executed.

Definition 1. A transition is a tuple 〈src, tgt, ev, cond, act〉
where src is the source state of the transition, tgt is its target
state, ev is an event, cond is a condition and act is an action.
The elements ev, cond and act are optional.

The elements of the tuple 〈src, tgt, ev, cond, act〉 of a
transition t are respectively referred to as srct, tgtt, evt, condt
and actt.

A Statemate model consists of a set of statecharts, reacting
in parallel. Fig 1 shows an example model consisting of
charts SC1 and SC2 executing concurrently. A step denotes
a reaction of the model where each statechart executes an
enabled transition. The execution proceeds in a sequence of
steps. An event generated during the ith step gets sensed at
the beginning of the i+1th step and expires immediately after
the i+1th step. The contents of a step are determined by the
system status at the beginning of that step. The system status
is a detailed snapshot of the system and is referred to as a
configuration.

Definition 2. A configuration is a tuple 〈S, V,E〉 where S is
a set of currently active states of each statechart, V is a set
of current values of data items and conditions and E is a set
of events to be sensed in the next step.

A Statemate model is said to be in a stable configuration if
it can not react any further without an environmental stimulus.
A Statemate model senses the environmental stimuli only
when it is in a stable configuration. Based on this, events in

23



Statemate are categorized into internal and external events.
Internal events are those generated by the model and external
events are those generated by its environment. When in a stable
configuration, a Statemate model senses environmental stimuli
and begins a chain reaction (a sequence of steps) reacting only
to the internal stimuli until it reaches a stable configuration
again. Any environmental stimuli occurred during the chain
reaction are stored and are sensed only upon reaching the
next stable configuration. This sequence of steps from one
stable configuration to another is called a superstep. Such
an execution of steps may alternately be represented as the
sequence of transitions executed by the steps. Such a transition
sequence is called a trace.

Definition 3. A trace is a sequence of transitions (equiva-
lently, a sequence of configurations) denoted by 〈t1, t2, ..., tn〉.

The above descriptions constitute the essential Statemate
terminology that we need for the rest of this paper. For
the complete set of Statemate statechart constructs and their
semantics, the reader may refer to [8].

B. SAL

Symbolic Analysis Laboratory (SAL) is a framework de-
veloped at SRI [9] for combining different tools for program
analysis, abstraction, theorem proving, and model checking
of transition systems. SAL has a language for describing
transition systems. Following is a brief list of important
features of the SAL language. For more details, the reader
may refer to [9].

The basic building block of any SAL program is a MODULE.
A MODULE has a set of variables, divided into input, output,
global and local variables. The input variables are read-only
variables. The rest are read-write variables. Initialization is
carried out exactly once and that is when the system exe-
cution starts. All transitions of a MODULE are defined in its
TRANSITION section.

SAL modules can be composed asynchronously using the
operator []. Properties expressed as LTL formulas can be
specified in SAL as theorems, which can be verified using
SAL’s model checkers: sal-smc (a symbolic model checker),
sal-bmc (a bounded model checker) and sal-inf-bmc (an infi-
nite state bounded model checker). We used sal-bmc for our
experimentation.

IV. HISTORY ABSTRACTION

A. Abstraction

Our abstraction is somewhat motivated by path extensions
where the idea is to allow an intermediate configuration (one
which is known to be reachable along some path) of the
system to become an initial configuration. We aim at reducing
the state-space drastically by allowing initialization in an
intermediate configuration. Given a (candidate) trace, we are
interested in the reachability of those states that lie in its
immediate future. A state s is in the immediate future of a
trace tr if there is a transition t from s′ to s, where s′ is one
of the states the system is in when tr completes execution. The

abstraction maintains a maximum of three states per statechart.
It further eliminates or abstracts most of the transitions in a
way that the reachability to an immediate future state is not
impacted, for a given selection of the candidate trace.

The algorithm begins to build the abstract model using the
final configuration of a candidate trace. The abstract model
is made to initialize from a configuration which is consistent
with this. The state in which a statechart is in, as per this
configuration, is called the current state for that statechart.
The unreached immediate future states of every current state
are preserved as part of the abstraction, in the form a single
state - called a future state. All transitions between a current
state and its successors are included in the abstract model,
with their target states changed to the future state. All other
states reached through some trace, from a given set of traces,
are merged into a single state - called a history state. Every
transition exiting the current state to reach a state in history,
and vice-versa, is added to the abstracted model with its source
or target state changed appropriately. A transition between two
states in history, if needed, is made to appear as a loop from
the history state to itself. The triggers and guards of these
transitions are omitted. Such a looping transition is needed
only if its action modifies the trigger or guard of an existing
transition in the abstract model. Additionally, to allow the
system to break out of such loops, we add a dummy external
(environment) event as their trigger.

Formally, let M denote the model. Let Tr be a given set of
traces, tr be our candidate trace in Tr and Cf denote the final
configuration of tr. Let csi denote the state of statechart SCi

as per Cf . Let Sr be the set of all states reached, through one
or more traces in Tr, excluding those in Cf . Let Fi denote the
set of immediate unreached successors of csi. Let C denote
the union of csi, over all i. Let Si and Ti, respectively, denote
the set of states and transitions in SCi. Let Ed be a dummy
external event. We construct an abstract model MA from M ,
as follows:

For each statechart SCi in M , MA keeps an abstracted
chart Absi. The states of this chart are csi, a future state fi
to represent all immediate unreached successors of csi, and
a history state hi. The transitions in Absi are populated by
executing the following steps for each transition t ∈ Ti:

1) if tgtt is csi and srct ∈ Sr, add t[src 7→ hi]
1 in Absi

2) if srct is csi

a) if tgtt ∈ Fi, add t[tgt 7→ fi] in Absi
b) if tgtt ∈ Sr, add t[tgt 7→ hi] in Absi
c) if tgtt is csi, add t in Absi

3) if srct ∈ Sr and tgtt ∈ Sr and actt modifies a variable v
such that v is used to evaluate the guard of some transition
ta in Absi, add t[src 7→ hi, tgt 7→ hi, ev 7→ Ed, cond 7→
true] to Absi

After the first iteration, the abstraction procedure keeps
iterating over the set Ti to execute step 3 until no more
transitions are added to the abstract model.

1x[y 7→ z] denotes the change applied to x where the value of the
component y in x is replaced by z.

24



Abs1

h1 cs1

f1

t′10 :

t′14 : E1 / e1 ;

t′15 : E3 [k>2] / i:=i+1;
t
′ 1
3

:E
d

/j
:=

1;

t′11 : Ed / i:=0; j:=0;

t′16 : E2 [i<30]

t′17 : e1 [j==1] / e2 ;

(a) Abstracted SC1

Abs2

h2 cs2

f2

t′20 :

t′24 : [k>5] / j:=1; e1 ;

t′25 : E5 [k<10]

t
′ 2
1

:E
d

/k
:=

0;

t′22 : Ed / k:=k+1;

t′26 : E6 [j==0]

t′27 : e1 [k>15] / e2 ;

(b) Abstracted SC2

Fig. 2. Abstracted Statechart Model

Fig. 2 shows the abstract model obtained
from the statecharts in Fig. 1 for the trace〈
t10, t11, t12, t20, t21, t22, t23, t25, t14

〉
. The configuration

Cf at the end of this trace is
〈
cs1 = s13, cs2 = s23, i =

0, j = 0, k = 1, e1 = true, e2 = false
〉
. The set of reached

states, Sr, is {s10, s11, s12, s20, s21, s22}. The transition sets
{t′14, t′15, t′24, t′25}, {t′17, t′27}, {t′16, t′26} and {t′11, t′13, t′21, t′22}
are added in the steps 1, 2(a), 2(b) and 3, respectively.

Claim. If the original model M , starting from the
configuration Cf , has a path p to a state s in Fi, say, such
that the intermediate states of p belong to Sr ∪C, then there
exists a path p′ in the abstracted model, MA, which reaches
the future state representing s.

Proof. The following steps demonstrate a construction of p′

by modifying p.
• replace the guard of each transition in p by Ed, unless

the transition appears with the guard in MA

• remove the action from each transition, unless either it
was already a part of the abstract model, or it affects any
of the remaining guards in p

• remove a transition if its guard has been replaced and its
action has been removed

It is easy to see that p′ is valid trace to the future state
representing s in the abstracted model. The abstraction, there-
fore, does not limit the behavior of a model for a given set
of history, future and current states. On the other hand, it

allows for infeasible runs. We eliminate such infeasible runs
by concretizing the paths incrementally.

B. Path Concretization

The reachability of a future state, in the abstracted model,
is checked by translating the model to a SAL specification.
The negation of the reachability property is encoded as an
LTL formula and we check for its validity using a bounded
model checker. The counterexample generated, in the event of
the formula not being valid, gives us a sequence of transitions
leading to some future state. The details of this procedure are
out of scope of this work and may be found in [3].

The counterexample trace generated by SAL shows reach-
ability of the desired state, in the abstracted model. This trace
is essentially a sequence of transitions leading to a future state
in MA. This trace may not be feasible in the actual model.
And even if it is, it may not be a complete trace with respect
to the actual model. In other words, since we have removed all
transitions having no direct effect on the reachability to any
future state, the obtained trace may not be contiguous. The
gaps in the trace need to be filled by the transitions that we
may have omitted, during the abstraction step. Moreover, the
order of transitions imposed by the trace may not conform to
the actual model. The enabled transitions of two statecharts
executing in parallel may fire in any order. The removal of
guards and triggers from the self-looping transitions in the
history state is another reason why we need to look at different
possible reorderings of the sequence.

Let us assume, for simplicity, that the transitions in the
trace are distinct. Since we are not interested in the order
in which these appear in the trace, we treat it as a set of
transitions. Starting from the initial configuration, we want to
find out if there’s a way to take the transitions in this set to
reach the desired state. This process of concretization of a path
essentially consists of the following four steps:

1) Starting from the current configuration, check if it is
possible to enable any transition in the set (i.e., reach
the source of a transition along some path such that its
guard evaluates to true).

2) If so, select one of the transitions which can be enabled
and pick a path p enabling it; extend the path obtained so
far by appending p to it, update the current configuration,
remove the selected transition from the set and continue.

3) If not, undo the last step, i.e., chop off the path segment
appended last; store this information so as to avoid such
a path in the following iterations.

4) Discard the set if you can’t undo any further.
Formally, let 〈t1, t2, .., tn〉 be the sequence of transitions

returned by SAL. Let S denote the set of these transitions.
Let Ck denote the configuration after the transition tk, for
1 ≤ k ≤ n. Let C0 be the initial configuration. Let ti be
the first transition from one of the history states to itself.
The transitions before ti have not been abstracted and hence
would have fired in order. Similarly, let tj be the last tran-
sition from a history state to itself, and hence all transitions
following tj constitute a concrete path. Therefore, we start the

25



concretization procedure with the configuration Ci−1, the set
of transitions being [ti, ti+1,.., tj]. Let M denote the original
statechart model. The pseudocode in Algorithm 1 illustrates
the concretize procedure.

Algorithm 1 Pseudocode of the concretize procedure
INPUT:

Sinp ← [t1, t2, .., tn]
M

INITIALIZATION:

Compute i, j, C0, C1, .., Ci−1 from the inputs
Pinit ← 〈t1, t2, .., ti−1〉; Pend ← 〈tj+1, tj+2, .., tn〉
P ← Pinit

S ← [ti, ti+1, .., tj ]
C ← Ci−1
Din ← ∅ /* stores discarded intermediate
paths */

Cterm ← parent[C0] /* Cterm is added for
termination */
for each k ∈ [1..(i− 1)]

Ck−1 ← parent[Ck]
end for each;

PROCEDURE:

while |S| > 0

if (C == Cterm)
discard Sinp; return

end if;

〈result, index, path〉 ← findNext(C, S,Din)

if (result == true)
P ← append(P, path) /* extends P by

appending path */
S′ ← S \ tindex
C ′ ← updateConf(path)
parent[S′]← S; parent[C ′]← C
S ← S′; C ← C ′

else
Sprev ← parent[S]; Cprev ← parent[C]
Din ← Din ∪ 〈Cprev, Sprev, C〉
S ← Sprev; C ← Cprev

end if;

end while;

P ← append(P, Pend)
if(validate(P,M)) then return P else return end if;

An intermediate path is disallowed by storing tuples of the
form 〈C, S,C ′〉, which essentially means that while starting
from the configuration C, and the set of transitions to be
taken being S, any path that leads to the configuration C ′

is uninteresting. This being so, because the configuration C ′

is known to be a non-progress configuration for the set S.
The findNext procedure works with the SAL encoding of the
model where the property to be satisfied has been expressed
in LTL. The entire process of translation to SAL to get traces
satisfying some desired property has been explained in one
of our earlier works ([3]). Given a starting configuration C,
a set of transitions S and a set of tuples, Din, of the form
〈C, S,C ′〉, findNext checks if there is a way to take some
transition in S such that if Cf is the configuration at the
end of that transition, then 〈C, S,Cf 〉 /∈ Din. While such a
procedure seems powerful enough to answer the reachability
of any state directly, in practice, bounded model checking fails
to explore paths longer than a small finite length for large
models. By interpreting the transitions constituting the trace
in the abstract model as intermediate edges in the final path,
our task reduces to connecting these edges, one at a time.
The likelihood of these connecting paths being much smaller
allows better scaling.

The procedure updateConf updates the current configuration
to the system configuration at the end of the path and validate
checks the feasibility of the path by running it on the actual
model. The assumption that the transitions be distinct was only
needed for the ease of argument. It is equally easy to maintain
another data structure which allows us to store the multiplicity
of each transition, unlike sets.

The set of transitions discarded by the concretize procedure,
when it revisits the initial configuration, is used to constrain
the abstraction so as to prevent SAL from returning the same
set again, for a given future state. The procedure constrain
encodes this as an additional constraint in SAL for every
discarded set. Algorithm 2 outlines the entire process of
reachability verification using abstract-concretize-constrain.
The abstract procedure performs the history abstraction in a
given model, as explained in the preceding section.

Algorithm 2 Outline of the entire procedure
MA ← abstract(M,Tr, tr)
pa ← (MA, f) /* pa is a path to f in MA */
while(pa)

po ← concretize(pa,M) /* po is a path to f in
M */

if(po) then return tr.po /* f is reachable if
concretize returns a path */

else
MA ← constrain(MA, pa, f); pa ← (MA, f)

end if;
end while;

Correctness. The correctness of the algorithm follows since
we validate each path by running it on the actual model. Such
a validation is required since we disregard the priority of
transitions while constructing the path incrementally. While
checking if a transition can be enabled, we only check if it
is possible to reach the source state of the transition such
that its guard evaluates to true. We do not add the additional
constraint, in order to simplify the search, that if there’s a

26



TABLE I
EXPERIMENTAL RESULTS

State Abstraction Concretization
(semi-manual)

#(Iterations)

1 < 20 sec < 1 min 1
2 < 20 sec < 1 min 1
3 < 20 sec < 15 min 4
4 < 20 sec < 10 min -

higher priority transition exiting that state then its guard must
evaluate to false.

Termination. In each iteration, concretize either reduces the
size of the set of transitions by one, or marks a configuration
pair, for a given set, as undesirable. Since the set of tran-
sitions has only finitely many elements and the undesirable
configurations are never revisited, the procedure terminates in
finite time under the assumption that the number of distinct
configurations is bounded. Moreover, since discarding a set
of transitions allows us to discard a set of configurations, the
procedure concretize also terminates if the number of distinct
configurations is bounded.

To illustrate this with our example in Fig. 2, let us assume
that the initial trace returned by SAL is 〈t′16, t′13, t′14, t′17〉.
Since the transitions {t′16} and {t′14, t′17} at the beginning
and the end of the trace, respectively, are concrete transitions,
concretize starts with the set S as {t′13}. The configuration,
C, to begin with, is the updated configuration after executing
t′16, starting from

〈
cs1 = s13, cs2 = s23, i = 0, j = 0, k =

1, e1 = true, e2 = false
〉

(Cf , in the history abstraction
section). The new configuration is very easily computed to
be

〈
cs1 = s11, cs2 = s23, i = 0, j = 0, k = 1, e1 =

false, e2 = false
〉
. The call to findNext(C, S, ∅) fails to

return a path since such a path is infeasible. The SAL
encoding is therefore modified with the additional constraint
that disallows the set {t′16, t′13, t′14, t′17} in future. The path〈
t′26, t

′
22, t

′
22, t

′
22, t

′
22, t

′
22, t

′
22, t

′
17

〉
, returned in a subsequent

iteration of our procedure, is concretized to a valid path.

V. EXPERIMENTATION

We have implemented our abstraction technique as a part
of our Statemate analysis tool [3], [2]. For our experiments,
we used a Statemate model of an ECU that controls the back
door functionality of a car. The model has 108 concurrent
statecharts with a total of 407 basic states. The techniques in
[3], [2] showed reachability of 367 basic states by producing
traces (counterexamples) but failed to scale to the remaining
40 states. For our experimentation, we randomly chose 4 states
out of these 40 and used the traces produced for the 367 states
to construct the abstract models. Table I presents the time
taken by the abstraction and concretization procedures, and
the number of iterations needed for concretization for each of
the 4 states.

Our technique found paths to all the four states in the
abstract model. We were able to concretize the path to three
of these four states with minimal manual efforts (we are yet
to fully automate the concretization procedure). For the first

two states, the paths that we obtained turned out to be an
extension of the corresponding candidate traces. This could
not be obtained by [3], [2] as they could not scale to these
states due to the number of states in the model. For states
3 and 4, the paths produced were spurious. By constraining
the model (refer Algorithm 2), we were able to find a valid
path to state 3 in four iterations. For state 4, it turned out
that our algorithm could never return a feasible path. This is
because reachability to this state was dependent on a state that
is unreached so far. Note that this exposes dependencies across
states, where one should attempt to reach a state only when
its dependencies are satisfied.

Our experiments suggest three key benefits of our technique:
a) valid extensions of candidate traces are inherent to our
technique, b) a spurious trace returned by our technique gets
discarded quickly by the concretize procedure and c) the
(reachability) dependency across states is highlighted.

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented History Abstraction, a trace based abstraction
technique that attempts to address state explosion. To the best
of our knowledge, this is the first such technique for the verifi-
cation of statecharts. As the abstraction reduces the state-space
and the concretization deals with small path segments, this
improves the scalability to large industry models. Moreover,
as the technique does not depend on any Statemate specific
semantics of statecharts, it is applicable to all state transition
systems.

On large models, bounded model checkers do not scale
because of long paths needed to reach some states. Our
experiments show that this is the case in practice and that our
technique scales to such states. However, our concretization
may take many iterations if there are many spurious paths in
the abstract model. For instance, this would be the case if there
exist other future states that have to be reached before reaching
a desired future state. This necessitates a precise dependency
analysis for reactive systems which is hard because of the
recursive dependency imposed by reactive loops. We plan to
investigate this in future, to strengthen our technique.

REFERENCES

[1] D. Harel and A. Naamad, “The statemate semantics of statecharts,”
ACM Trans. Softw. Eng. Methodol., vol. 5, no. 4, pp. 293–333, Oct.
1996. [Online]. Available: http://doi.acm.org/10.1145/235321.235322

[2] U. Shrotri, R. Venkatesh, and R. Metta, “Proving unreachability
using bounded model checking,” in Proceedings of the 3rd India
software engineering conference, ser. ISEC ’10. New York, NY, USA:
ACM, 2010, pp. 73–82. [Online]. Available: http://doi.acm.org/10.1145/
1730874.1730891

[3] A. Kulkarni, R. Metta, U. Shrotri, and R. Venkatesh, “Scaling up model-
checking,” in Next Generation Design and Verification Methodologies
for Distributed Embedded Control Systems, S. Ramesh and P. Sampath,
Eds. Springer Netherlands, 2007, pp. 275–283. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4020-6254-4 21

[4] L. Zhang, M. R. Prasad, M. S. Hsiao, and T. Sidle, “Dynamic
abstraction using sat-based bmc,” in Proceedings of the 42nd
annual Design Automation Conference, ser. DAC ’05. New York,
NY, USA: ACM, 2005, pp. 754–757. [Online]. Available: http:
//doi.acm.org/10.1145/1065579.1065776

27



[5] G. P. Bischoff, K. S. Brace, G. Cabodi, S. Nocco, and S. Quer,
“Exploiting target enlargement and dynamic abstraction within mixed
bdd and sat invariant checking,” Electron. Notes Theor. Comput.
Sci., vol. 119, no. 2, pp. 33–49, Mar. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2004.06.061

[6] M. Satpathy, A. Yeolekar, and S. Ramesh, “Randomized directed testing
(redirect) for simulink/stateflow models,” in Proceedings of the 8th ACM
international conference on Embedded software, ser. EMSOFT ’08.
New York, NY, USA: ACM, 2008, pp. 217–226. [Online]. Available:
http://doi.acm.org/10.1145/1450058.1450088

[7] M. Abadi and L. Lamport, “The existence of refinement mappings,”

Theor. Comput. Sci., vol. 82, no. 2, pp. 253–284, May 1991. [Online].
Available: http://dx.doi.org/10.1016/0304-3975(91)90224-P

[8] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The
Statemate Approach, 1st ed. New York, NY, USA: McGraw-Hill, Inc.,
1998.

[9] L. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar, M. Sorea, and
A. Tiwari, “SAL 2,” in Computer Aided Verification, 16th International
Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings,
ser. Lecture Notes in Computer Science, vol. 3114. Springer, 2004, pp.
496–500.

28


