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Abstract. We look at the problem of verifying permutation invariance
in Deep Neural Networks (DNNs) – if certain permutations are applied
on the inputs, its effect on the outputs will also be a permutation (pos-
sibly identity). These properties surface in many interesting practical
applications of DNNs, e.g. consider the aircraft collision avoidance sys-
tem that guides an aircraft to turn right if the sensory inputs suggest an
intruder aircraft coming from the left, and vice-versa. The naive way of
verifying such properties – using two copies of the network and a stan-
dard DNN verification technique, e.g. Reluplex – is impracticable as the
complexity of this task is exponential in the network size. This paper
proposes a sound, abstraction-based technique to establish permutation
invariance in DNNs with ReLU as the activation function. The technique
computes an over-approximation of the reachable states, and an under-
approximation of the safe states, and propagates this information across
the layers, both forward and backward. The novelty of our approach lies
in a useful tie-class analysis, that we introduce for forward propagation,
and a scalable 2-polytope under-approximation method that escapes the
exponential blow-up in the number of regions during backward propa-
gation. Experiments demonstrate that our method compares favorably
with the existing state-of-the-art in DNN verification.

1 Introduction

Artificial neural networks are now ubiquitous. They are increasingly being
allowed and used to handle increasingly more complex tasks, that used to
be unimaginable for a machine to perform. This includes driving cars, play-
ing games, maneuvering air traffic, recognizing speech, interpreting images and
videos, creating art, and numerous other things. While this is exciting, it is
crucial to understand that neural networks are responsible for a lot of decision
making, some of which can have disastrous consequences if gone wrong. Con-
sider a DNN that is being used to suggest the direction in which an aircraft
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must turn to avoid a possible collision with an intruder aircraft. Informally, such
a network is well-behaved if it asks the own ship to turn right (left) when an
intruder approaches from the left (right). Consider another network that takes
four inputs – the cards dealt to the players in a game of contract bridge – and
decides which team can bid game. Loosely speaking, if you exchange the hands
of partners (north and south, or east and west), the decision would not change.
However, it will change if, say, you exchange north’s hand with east. Such per-
mutation invariance properties, for certain permutations at input and output
layers, are important to the correctness and robustness of these networks.

Formally, given a DNN N , permutations σin and σout, two vectors B1 and
B2 of dimension as large as the input size of the neural network and a positive
real M , the permutation invariance is defined as: if the inputs of the network lie
between B1 and B2 component-wise, then permuting the input of the network by
σin leads to the output being permuted by σout up to a tolerance of M . That is,

B1 ≤ x ≤ B2 ⇒ |σout(N (x)) − N (σin(x))| ≤ M

Permutation invariance of DNNs is really a two-safety property, i.e. it can
be verified using existing techniques for safety verification of feed-forward neu-
ral networks (FFNNs), by composing two copies of the network. A straight-
forward way to do this would be to encode the network and the property as
SMT constraints, and solve it using Z3 [4]. It is invariably more efficient, how-
ever, to use specially designed solvers and frameworks such as Reluplex [12]
and Marabou [13,14]. Still, these methods do not scale well, and are particu-
larly inapplicable in this case (which requires doubling the network size), as the
worst-case complexity of FFNN verification is exponential in the size of the input
network.

This paper proposes a technique to verify permutation invariance properties
in DNNs with ReLU (Rectified Linear Unit) activation function. Our technique
computes, at each layer, an over-approximation of the reachable states (moving
forward from the input layer), and also an under-approximation of the safe states
(moving backward from the final layer at which the property is specified). If the
reachable states fall entirely within the safe region in any of the layers, the
property is established. Otherwise, we obtain a witness to exclusion at each
layer and do a spuriousness check to see if there is an actual counterexample.

The novelty of our approach lies in the way we propagate information across
layers. For the forward propagation of reachable states, as affine regions, we have
introduced the notion of tie classes. The purpose of tie classes is to group together
the Relu nodes that will always get inputs of the same sign. This grouping cuts
down on the branching required to account for active and inactive states of all
the Relu nodes during forward propagation. Intuitively, tie classes let us exploit
the behavioral symmetry of the network, with respect to the inputs and the
permutation. The backward propagation relies on convex polytope propagation.
During the propagation one may have to account for multiple cases, based on the
possible signs of the inputs to the Relu nodes (corresponding to each quadrant
of the space in which the polytope resides), leading to an exponential blow-up in
the worst case. We address this by proposing a 2-polytope under-approximation
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method that is efficient (does not depend on LP/SMT solving), scalable, as
well as effective. Note that the forward propagation may also be done using
convex polytope propagation (which is how it is usually done, e.g. [19]), but it
requires computing the convex hull each time, which is an expensive operation.
In contrast, tie-class analysis helps us propagate the affine regions efficiently.

The core contributions of this paper are: i) an approach for verifying permu-
tation invariance, based on novel forward- and backward-propagation techniques
(Sect. 4), ii) a proof of soundness of the proposed approach (in the Appendix),
and iii) a tool and an experimental evaluation of our approach (Sect. 5).

2 Preliminaries

We represent vectors in n-dimensional space as row matrices, i.e., with one row
and n columns. A linear transform T from and n dimensional space to an m
dimensional space can then be represented by a matrix M with n rows and m
columns, and we have: T (x) = xM .

Convex Polytopes. A convex polytope is defined as a conjunction of a set of
linear constraints indexed by i of the form x.vi ≤ ci, for fixed (column) vectors
vi and constants ci. Geometrically, it is a convex region in space enclosed within
a set of planar boundaries. Symbolically, we can represent a convex polytope by
arranging all the vis into the columns of a matrix M , and letting the components
of a row vector b to be constants bi: xM ≤ b.

Pullback. The pullback of a convex polytope P (given by xMn×k
P ≤ bp), over

an affine transform T (given by x → xMm×n
T + tT ), is defined as the set of all

points x such that T (x) lies inside P , i.e., T (x) ∈ P ⇔ xMT MP ≤ bP −tT MP .1

Affine Region. An n-dimensional affine subspace is the set of all points gener-
ated by linear combinations of a set of basis vectors vi , 0 ≤ i < k, added to a
center c: {x | x = (Σk−1

i=0 αivi) + c, for some real αi}.
We define an affine region as a constrained affine subspace by bounding the val-
ues of α to be between −1 and 1. Formally, an affine region A[BA, c] generated
by a set of basis vectors vi , 0 ≤ i < k, represented by a matrix Bk×n

A , is defined
as the following set of points: x ∈ A ⇔ (∃α. x = αBA + c ∧ |α| ≤ 1).

Pushforward. The pushforward (AT ) of an affine region A (defined by BA and
cA ), across an affine transform T , (given by x → xMT +tT ), is the set of points:
x ∈ AT ⇔ (∃α. x = αBAMT + cAMT + tT , |α| ≤ 1). This is the image of
A under T . (In a DNN context, a separate MT and tT is associated with each
layer that is constructed from the weights and bias used at that layer.)

DNN Notation and Conventions. We number the layers of the neural net-
work as 0, 1, 2, and so on, upto n − 1. A layer is said to consist of an affine
transform followed by a Relu layer. The affine transform of layer i is given by
x → xWi +bi , where Wi are the weights and bi are biases. We denote the input

1 We use bold face to denote vectors, and Ap×q means P is a p × q matrix.
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vectors by x0 feeding into the affine transform of layer 0, and in general for
i > 0, the input of layer i’s affine transform (the output of the i − 1th layer’s
Relu) as xi . The output of layer i’s affine transform (the input to layer i’s Relu)
is labeled as yi . Finally, the output is xn . Also, we maintain copies of each
variable’s original and permuted value (using a primed notation). So, we have:

x0,x
′
0 → xW0 + b0 → y0, y

′
0 → Relu → x1,x

′
1 → xW1 + b1 → y1, y

′
1 → Relu →

· · ·yn −1, y
′
n −1 → Relu → xn ,x′

n

Here, Wi and bi represent the action of the layer on the joint space of xi and
x′

i . Then, the invariance property we wish to verify has the following form:

B1 ≤ x0,x
′
0 ≤ B2 ∧ x′

0 = σin(x0) ⇒ |x′
n − σout(xn )| ≤ M

Note that the precondition here is an affine region and the postcondition is a
conjunction of linear inequalities, involving permutations.

3 Informal Overview

Algorithm 1. Overview of our approach
1: inputs: N ,n, pre, post
2: globals: reach[n], safe[n]

3: reach[0] ← initPre(pre, N )
4: safe[n − 1] ← initPost(post , N )
5: for i ∈ [1 . . . n) do
6: reach[i] ← forwardPropagate(reach[i−1], N )

7: for i ∈ [n − 2 . . . 0) do
8: safe[i] ← backwardPropagate(safe[i + 1], N )

9: for i ∈ [1 . . . n) do
10: if (reach[i] ∧ ¬safe[i]) is unsatisfiable then
11: return property holds
12: else � there must be a satisfying witness
13: spuriousnessCheck(witness, i)

Algorithm 1 presents an
overview of our approach.
The input to it is the net-
work N with n layers, and the
invariance property given as
a (pre, post) pair of formu-
las. The algorithm begins by
converting the pre-condition
to an affine region by calling
initPre (line 3) and express-
ing the postcondition as a
convex polytope by calling
initPost (line 4), without
any loss of precision (see
Sect. 3.1). Then it propagates
the affine region forward, to

obtain an over-approximation of the set of reachable values as an affine region
at each subsequent layers (line 6). Similarly, an under-approximation of the safe
region – as a union of two convex polytopes – is calculated at each layer, prop-
agating the information backward from the output layer (line 8). The property
holds if the reachable region at any layer is contained within the safe region
(lines 9–13).

If the inclusion check does not succeed, the algorithm attempts to construct
an actual counterexample from the witness to the inclusion check failure (see
Algorithm 2). In general, pulling back the witness to the first layer is as hard as
pulling back the postcondition. So, we try to find several individual input points
that lead to something close to the witness at the layer where the inclusion fails,
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Algorithm 2. Spuriouness checking algorithm
1: procedure spuriousnessCheck (counterexample, layer)
2: cexes ← [counterexample] � list of potential counterexamples
3: while cexes �= ∅ ∧ layer > 0 do
4: prevCexes ← ∅ � collect (approximate) pullbacks in the prev. reach
5: for cex ∈ cexes do
6: prevCexes << pullBackCex (cex , layer , N )

⋂
reach[layer − 1]

7: cexes ← prevCexes; layer ← layer − 1

8: if cexes = ∅ then
9: return inconclusive � pullback failed, no potential counterexamples

10: for cex ∈ cexes do
11: for j ∈ [0 . . . n) do � forward simulation of the counterexample
12: cex ← simulateLayer(cex , j, N )
13: if cex ∈ safe[j] then � spurious c’example, move on to the next one
14: break
15: return (property failed, cex ) � actual counterexample found

16: return inconclusive � all potential counterexamples are safe

allowing us to check a number of potential counterexamples. In lines 5–6 (Algo-
rithm 2) we repeatedly apply pullBackCex and collect these approximate pull
back points layer by layer backwards until the input layer. We now simulate these
points forward to check if the output of the DNN lies within the safe region in
lines 11–17. If for any point it does not, we have successfully constructed a coun-
terexample. Otherwise, if we cannot find any potential counterexamples (line 10),
or if all the potential counterexamples are safe (line 17), the witness represents a
spurious counterexample and the algorithm returns inconclusive. Before getting
into the details of forwardPropagate, backwardPropagate, and pullBackCex , we
present an example and describe the pre-processing part of our algorithm.

3.1 Running Example

Consider the neural network shown in Fig. 1. Here, we have separated the result
of computing the weighted sum from that of the application of the Relu into
separate nodes, represented by dashed and solid circles respectively. Also, we
show the weights as labels on the arrows coming into a combination point (dark
circles), and biases as labels of arrows emerging from the point. The arrows for
weights that are 0 have been omitted. The values at (output of) each node in
the network for the input in the range [0.5 0] are shown in the diagram at that
node. This network has the following symmetry property: 0 ≤ x00, x01, x

′
00, x

′
01 ≤

1 ∧ x00 = x′
01 ∧ x01 = x′

00 ⇒ |[x20 x21]− [x′
21 x′

20]| ≤ 0.1. This expresses the fact
that flipping the inputs leads to the outputs being flipped, σin and σout both
flip the components.

Preprocessing: The Wi and bi are calculated as follows: If the weights and
bias of layer i are W i and bi , then Wi =

[
W i 0
0 W i

]
and bi = [bi bi ] as we need

to track both the original and permuted values at each layer. For this example:
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Fig. 1. σ = (0→1, 1→0), g = 1000

W0 =⎡
⎢⎢⎣

1000 −1000 1000 −1000 0 0 0 0
−1000 1000 −1000 1000 0 0 0 0

0 0 0 0 1000 −1000 1000 −1000
0 0 0 0 −1000 1000 −1000 1000

⎤
⎥⎥⎦

b0 =
[
0 0 −1 −1 0 0 −1 −1

]

W1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b1 =
[
0 0 0 0

]

Action of initPre and initPost: Now, initPre calculates reach[0] as the follow-
ing affine region given by basis B0 and center c0, and initPost expresses safe[2]
as a convex polytope:

reach[0] :
∃α : [x0 x′

0] = αB0 + c0, |α| ≤ 1

B0 =
[
0.5 0 0 0.5
0 0.5 0.5 0

]

c0 =
[
0.5 0.5 0.5 0.5

]

safe[2] :

[x2 x′
2]

⎡

⎢
⎢
⎣

1 0 −1 0
0 1 0 −1
0 −1 0 1

−1 0 1 0

⎤

⎥
⎥
⎦ ≤ [

0.1 0.1 0.1 0.1
]

(1)
Forward Propagation: ForwardPropagate then propagates (1) across the lay-
ers to get affine regions that are over-approximations for the reachable region
for that layer. While propagation across the linear layer can be done easily via
matrix multiplication, propagating across the Relu layer is in general hard, since
we need to take into account all possible branching behaviors. We do this via a
tie class analysis (Sect. 4.1) that exploits the inherent symmetry of the network
and precondition. For this network, propagating across the first linear layer gives
us an affine region given by the basis and center:
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B′
0 =

[
500 −500 500 −500 −500 500 −500 500

−500 500 −500 500 500 −500 500 −500

]

c′
0 =

[
0 0 −1 −1 0 0 −1 −1

]

Then, propagating across the Relu using the tie class analysis (Sect. 4.1) gives
us the basis B1 and center c1 for reach[1 ]. Similarly, the algorithm propagates
across the second layer to get B′

1, c′
1, B2 and c2. In this case, the affine region

before and after the Relu turn out to be the same, and there is no loss in precision
going from B′

1 to B2. The matrices are:

B1 = B′
1, B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

500 0 0 0 0 500 0 0
−500 0 0 0 0 −500 0 0

0 −500 0 0 −500 0 0 0
0 500 0 0 500 0 0 0
0 0 500 0 0 0 0 500
0 0 −500 0 0 0 0 −500
0 0 0 −500 0 0 −500 0
0 0 0 500 0 0 500 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

500 0 0 −500
−500 0 0 500

0 −500 −500 0
0 500 500 0

−500 0 0 −500
500 0 0 500
0 500 500 0
0 −500 −500 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c1 =
[
0 0 0 0 0 0 0 0

]
c′
1, c2 =

[
0 0 0 0

]

(2)

Inclusion Check: Now, we see that if we substitute x with the form given in
reach[2] given by B2 and c2 above into safe[2] from Eq. 1, the right side of the
inequality in safe[2] is a matrix multiplication that evaluates to 0. So, reach[2]
is included in safe[2]. This is done by an algorithm (Sect. 4.3) that checks this
using an LP solver, and since it succeeds in this case, it returns property holds.

Note that for this example, it was unnecessary to perform any back propa-
gation of the safe[i] to previous layers, as the inclusion check succeeded at the
output layer. In general, back propagation (Sect. 4.2) would be performed to
compute under-approximations. Spuriousness check (Sect. 4.3) will be needed if
the inclusion check fails.

4 Forward and Backward Propagation

An input precondition of the form B1 ≤ [x0,x
′
0] ≤ B2 with x′

0 = σ(x0) can
always be converted into an equivalent affine region characterized by the formula
∃α : [x0 x′

0] = αV + c, |α| ≤ 1 by making corresponding components of V the
same according to σ, shifting the origin of V and scaling. This gives us reach[0 ].
Similarly, a postcondition of the form |x′

n − σout(xn )| ≤ M can be written as
the convex polytope |[xn x′

n ]L| ≤ M where each column of L calculates one of
the differences of corresponding components, giving us safen . Having reach[0 ]
and safen , we move on to forward and backward propagation.
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4.1 Forward Propagation Using Tie Classes

Let reach[j ] = {[xj x′
j ] | ∃α : [xj x′

j ] = αBj +cj , |α| ≤ 1}, be the affine region
representing an over-approximation of reachable points at the input to layer j;
forwardPropagate constructs reach[j + 1 ] as an affine region that is an over-
approximation for the set of all points produced when reach[j ] is propagated
to the input of layer j + 1. reach[j + 1 ], is constructed by forward propagating
reach[j] first across the affine transform at j to produce an affine region Aj ,
which is then further forward propagated across the Relu layer.

Forward propagation across the linear transform given by x → xWj + bj is
straightforward and precise as it can be computed as a simple linear pushforward
across Wj , i.e., Aj([yj y′

j ]) ⇔ (∃α : [yj y′
j ] = αB′

j + c′
j , |α| ≤ 1), where

B′
j = BjWj is the new basis and c′

j = cjWj + bj is the new center.
Propagating Aj across Relu is more complex and challenging as it requires,

in general, a detailed case analysis of the polarity and strength of the compo-
nents of the basis vectors and the scaling α; rather than performing it precisely,
reach[j + 1 ] is constructed as an affine region that over-approximates the Relu
image. Several methods can be used to construct an over-approximation that
make different tradeoffs between precision and efficiency. One can construct the
smallest affine region (or polytope) that includes all the reachable values possi-
ble across the Relu [19]. Computing the smallest region can be inefficient as it
is an optimization problem requiring several expensive LP or convex-hull calls.
Our method efficiently constructs an over-approximate affine region that, while
sub-optimal, does not need any LP calls and is effective for checking permutation
invariance properties.

Our method to construct the over-approximate affine region relies on looking
for similarities in the polarity of the components of the vectors belonging to
reach[j ] that are preserved when a Relu is applied to the region. For this, we
introduce the notion of tie classes associated with an affine region.

Propagating over Relu with Tie Classes. Given an affine region A defined
by a basis vi and center c we define a binary relation, tied, over the set of indices2

denoting the components of any vector x in A as follows.

Definition 1 (Tied). Given an affine region A characterized by the condition
∃αi : x =

∑
i αivi + c, |αi| ≤ 1, and two indices i1 and i2 in the index set, we

say i1 and i2 are tied iff for every vector x in A the components at i1 and i2
have the same sign.

The binary relation being tied is an equivalence relation on the index set of
vectors x that generates an equivalence class defined as follows.

Definition 2 (Tie Class). A tie class for an affine region A is the equivalence
class (partitioning) of the index set for the vectors in A induced by the equivalence
relation tied for A.

2 We assume the indices range from 0 to n − 1 for vectors of size n.
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Consider the affine region generated by the basis vi and c: v0 = [1 0 0 2], v1 =
[0 1 0.5 0], c = [0.5 2 1 1]. For this region, the indices 0 and 3 are tied because
for every vector in the region the component 3 is always 2 times the component
0 , since the component 3 of the vi and the c are 2 times the component 0.
Similarly, indices 1 and 2 are tied as well. For this region, the tie equivalence
class is {0 : {0, 3}, 1 : {1, 2}}

Tie Class Based Transformation of Basis Vectors. To help construct the
basis vectors for the over-approximation of the output of Relu, we define a trans-
formation of the set of basis vectors at the input to Relu. For each tie class j
in the equivalence class induced, and each vector vi in the input basis set, we
construct a vector v′j

i by setting all the components of vi that are not in the tie
class j to 0. Similarly, we get a cj from c for each tie class j. For the example
above, we have:

v′0
0 = [1 0 0 2] v′0

1 = [0 0 0 0] c0 = [0.5 0 0 1]

v′1
0 = [0 0 0 0] v′1

1 = [0 1 0.5 0] c1 = [0 2 1 0]

Lemma 1. Given x =
∑

i αivi + c, we can write Relu(x) =
∑

i,j α′j
i v′j

i +
∑

j βjcj where each α′j
i is either αi or is 0, and each βj is either 0 or 1. More-

over, the components of Relu(x) with indices in a tie class j are 0 iff α′j
i and βj

are 0.

This lemma3 states that there exists an oracle that, given an x in reach[j ],
can determine whether to set each α′j

i to αi or 0 and each βj to 0 or 1 so that
we can express Relu(x) in the above form. Regardless of what the oracle chooses
we can always replace the condition α′j

i = αi ∨ α′j
i = 0 with |α′j

i | ≤ 1 as
an over-approximation. Now, if we can somehow replace

∑
j βjcj with a single

vector, we will have found our output affine region. The following theorem proves
that we can replace this sum with Relu(c).

Theorem 1. Given x =
∑

i αivi + c, |αi | ≤ 1, in an affine region A, there are
scalars α′j

i such that:

1. Relu(x) =
∑

i,j α′j
i v′j

i + Relu(c)
2. |α′j

i | ≤ 1 for all i and j.

The above theorem ensures that if we relax the condition on α′j
i to |α′j

i | ≤ 1,
the affine region obtained an over-approximation for the Relu image of A. Given
vi and c, it is easy to compute v′j

i and Relu(c) if we know what the tie classes
are, since this only involves setting certain components to 0. All we need to do
now is compute the tie classes for the given vi and c.

3 A more detailed version of the paper including an appendix with all the proofs and
other details is available at https://arxiv.org/abs/2110.09578.

https://arxiv.org/abs/2110.09578
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Algorithm 3. Checking tiedness
1: inputs: A, −→vi , −→c , i1, i2

2: if ∀j :
v
i1
j

v
i2
j

= ci1

ci2
then return tied

3: else if −→ci1 ≥ 0 and −→ci2 ≥ 0 then
4: if i1 or i2 component of some −→x ∈ A < 0

then return not tied
5: else return tied
6: else if −→ci1 < 0 and −→ci2 < 0 then
7: if i1 or i2 component of some −→x ∈ A > 0

then return not tied
8: else return tied
9: else return not tied

Computing Tie Classes.
To compute tie classes, for
every pair of indices i1 and
i2, we check whether i1 and i2
are tied, and then group them
together. One way to check if
two i1 and i2 are in the same
tie class using two LP queries
involving the αi: one which
constrains the value of com-
ponent i1 of x to positive and
component i2 to negative, and
vice versa. If any of these are
feasible, i1 and i2 cannot be

in the same tie class. Else, they are in the same tie class. This needs to be
repeated for each pair of i1 and i2, which amounts to n ∗ (n − 1) LP calls for n
Relu nodes, which is inefficient. Instead, we state another property of tie classes
that will allow us to compute the tie classes more efficiently:

Theorem 2. Two indices i1 and i2 are in the same tie class if and only if one
of the following is true:

1. The i1 and i2 components of x are always both positive.
2. The i1 and i2 components of x are always both negative.
3. The vector formed by the i1 and i2 components of the vk and c are parallel.

In other words, if vl
k is the l-component of vk , and cl is the l component of

c, then [vi1
1 , vi1

2 , · · ·ci1 ] = k[vi2
1 , vi2

2 , · · ·ci2 ] for some real k > 0.

Algorithm 3 uses Theorem 2 to check if i1 and i2 are in the same tie class.
The queries in lines 5, 7, 12 and 14 can be reduced to looking for αj such that∑

j αjv
i1
j + ci1 < 0. Such queries can be solved via an LP call, but we use

Lemma 2 to avoid LP calls and check these queries efficiently.

Lemma 2. The maximum and minimum values of
∑

i αivi, for real αi, fixed
real vi, constrained by |αi| ≤ 1, are

∑
i |vi| and −∑

i |vi| respectively.

If the network has a lot of inherent symmetry with respect to the input
permutation, it is more likely for different neurons in the same layer to be tied
together, leading to larger tie classes. This, in turn, reduces the number of basis
vectors required to construct our over-approximation of the Relu image, and
improves the quality of the over-approximation. Thus, we can expect our over-
approximation to perform well for checking permutation invariance.

4.2 Backward (Polytope) Propagation

Given a convex polytope P : xL ≤ u, we aim to symbolically construct a region
that reasonably under-approximates WeakestPrecond(Layer , P ). Back propagat-
ing P across the linear part of a layer is easy as it can be done precisely by simply
pulling back P across the affine transform of the layer.
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Back propagating it across Relu is challenging as WeakestPrecond(Relu, P )
may potentially touch all of the exponentially many “non-positive” quadrants.
For each non-positive quadrant Q, relu acts on the points in the quadrant by
projecting them linearly to the positive quadrant. If this projection is given by
Relu(x) = xΠQ, we have Relu(x)L ≤ u ⇔ xΠQL ≤ u. Thus, the inverse
image of P over Relu restricted to each quadrant is itself a polytope, giv-
ing us exponentially many polytopes in WeakestPrecond(Relu, P ). Therefore,
exact backpropagation is infeasible, and we look for under-approximations to
WeakestPrecond(Relu, P ).

A sound single polytope solution is to use P ∧x ≥ 0 ignoring the entire “non-
positive” region at the input, but this is too imprecise. Our compromise solution
is to use a union of two polytopes: one that includes the positive region P ∧x ≥
0 and another that includes as much of the non-positive region as possible.
To construct a polytope under-approximating the non-positive regions using
inexpensive linear algebraic techniques, we use two separate methods, depending
on whether P includes the 0 vector or not.

Case 1, P Does not include 0: Of all the non-positive quadrants, we choose
the quadrant Qc that has the center point of reach[i]. Then, we take the polytope
corresponding to the inverse image of P over Relu restricted to Qc as the under-
approximation for the non-positive region. This center point based heuristic for
choosing a quadrant is motivated by the fact that if the center point of reach[i]
is in Qc, we know that at-least a part of reach[i] must be in Qc.

x

⎡

⎣
1 −1
1 −1
1 −1

⎤

⎦ ≤ [
2 −1

]
(3) x

⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 −1
1 −1
1 −1

⎤

⎦ = x

⎡

⎣
0 0
1 −1
1 −1

⎤

⎦ ≤ [
2 −1

]
(4)

For example, consider the polytope given in Eq. 3. This touches all of the 7
non-positive quadrants, and so there will be one polytope for each of these in
WeakestPrecond(Relu, P ). Let us say the center point reach[i] is in the quadrant
where the first component of x is negative, and all other components are non-
negative. In this component, Relu acts by setting the first component to 0, and
ΠQ is given by the identity matrix with the uppermost leftmost element set to
0. Then, following the calculations before, Eq. 4 gives us the polytope for the
negative side region.

Case 2, P includes the 0 vector: If 0 is inside P , there is a high chance for
the center of reach[i] to lie inside the all-negative quadrant, and for the above
method to produce x ≤ 0 as the non-positive polytope. While this polytope may
potentially cover a large number of the points in reach[i], the polytope touches
P only at the origin. Thus, points in reach[i] that are close to the origin may
not be covered. We therefore try to do better by extending x ≤ 0 a region of the
form x ≤ η, where all components of η are non-negative.

We notice that x ≤ η ⇒ 0 ≤ Relu(x) ≤ η. Thus, η should satisfy the
soundness condition ∀y 0 ≤ y ≤ η ⇒ yL ≤ u. To cover as many points as
possible in the region, we try to maximize the “volume”

∏
i ηi, where ηi are

the components of η. If P has a single linear inequality, we can do this by
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constraining η to the boundary, and solving for the gradient of
∏

i ηi to be 0.
This reduces to solving a set of linear inequalities. We repeat this procedure for
each inequality j in P to get an ηj and take the component-wise minimum to
get the final η. For example, the columns 1 and 2 of polytope 5 below give us
the η1 and η2 in Eq. 6.

x

[
1 2
2 1

]
≤ [

2 2
]

(5)
η1 =

[
1 0.5

]
,η2 =

[
0.5 1

]

η = min(η1,η2) =
[
0.5 0.5

] (6)

Thus, we backpropagate a polytope across Relu to get a union of two poly-
topes. If we repeat this process at each layer, the number of polytopes will
double at each layer, leading to an exponential blowup. To avoid this, we keep
this 2-polytope under-approximation only to perform inclusion check (line 10
in Algorithm 1). The polytope corresponding to the negative region is dropped
before it is subsequently back propagated further into earlier layers.

4.3 Inclusion Checking and Counterexample Propagation

Our goal is to check whether reach[i], given by basis B and center c, is included
in safe[i], given as union of P1 : xL1 ≤ u1 and P2 : xL2 ≤ u2.

The first challenge in inclusion checking comes from the fact that safe is a
disjunction of two polytopes. In the case when P comes from Case 2 above,
we notice that the two polytopes P1 and P2 lie entirely in the opposite sides
of the plane separating the selected quadrant from the positive quadrant. This
allows us to reduce the inclusion check to seeing if all points in reach[i] on each
side of the plane lie entirely inside the corresponding polytope. For Case 1 we
do not have any such separating plane, but here inclusion holds iff for all i, all
points in reach[i] above the xi ≥ ηi plane lies in the positive side polytope.
Thus, in both cases, we have reduced inclusion checking to a query of the form
(∃α : x = αB + c ∧ |α| ≤ 1 ∧ x.v ≥ k) ⇒ xL ≤ u.

To solve the above query, we pull xL ≤ u and x.v ≤ k back to the space of α
using the linear transform given by B and c to get Pα and Kα respectively. This
gives us a bounded polytope inclusion query, which can be solved by optimizing
the objective given by each inequality of Pα with Kα as constraint. This we solve
via an LP call, thus reducing inclusion checking to multiple simple LP calls.

If the inclusion fails, we obtain a point w that witnesses the violation of
the inclusion at layer i. Since back-propagating this witness to the input layer
to generate a counterexample is in general as hard as backpropagating the safe
regions, in pullBackCex we generate multiple approximate back-propagations of
w across a layer, which map to points close to w when taken across the layer.
We do this by first generating several candidate back-propagated points x in the
reach randomly. Then, we project each x towards the pullback of w with respect
to the action of the layer restricted to x’s quadrant. Finally, we discard all x that
under the action of the layer lead to points that have euclidean distance more
than D from w, where D is a parameter that we tune. Doing this backwards
layer by layer gives us many points in the input layer which approximately map
to w, and we check if these violate the property.
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4.4 Example (continued from Sect. 3.1)

Details of initPre: For the input points [x00 x01 x′
00 x′

01 ], x00 = x′
01, and

x01 = x′
00. This can be expressed as saying that [x00 x01 x′

00 x′
01 ] is a linear

combination of the rows of:
[
1 0 0 1
0 1 1 0

]
.

Now, as the points also have components in the range [0, 1], we can shift the
origin to 0.5 and scale by 0.5 to get the affine region αB0 + c0, |α| ≤ 1 with

B0 =
[
0.5 0 0 0.5
0 0.5 0.5 0

]
c0 =

[
0.5 0.5 0.5 0.5

]

Forward Propagation Across Layer 1: Now, we follow the algorithm as it
pushes 1 forward across the layers of the network to get the postconditions at
various points. Firstly, 1 is pushed forward across linear layer 0 by taking the
pushforward with respect to W0 and b0 to get:

B′
0 =

[
500 −500 500 −500 −500 500 −500 500

−500 500 −500 500 500 −500 500 −500

]

c′
0 =

[
0 0 −1 −1 0 0 −1 −1

]

Now, the algorithm performs the tie class analysis to push B′
0 and c′

0 across
the Relu to get B1 and c1. Here, using 3 of Theorem 2 the algorithm determines
that the tie classes of the columns are {0, 5}, {1, 4}, {2, 7},{3, 6}. We note that if
x0 and x′

0 are related by the permutation that swaps the components, the pairs
of variables in each of the above tie class will actually have the same value. Thus,
the tie class is capturing a weaker over-approximation of this strict symmetry
property. Now, for each tie class, all the columns of all the basis vectors in B′

0

not in the tie class is set to 0, and collecting the resulting vectors gives us B1;
c1 is simply given by Relu(c′

0). As before, B1 is pushed across linear layer 1 to
get B′

1. Both these matrices are given in Eq. 2 in Sect. 3.1. Again, the algorithm
performs a tie class analysis, getting {0, 3} and {1, 2}. This again is a weakening
of the fact that these pairs of variables are actually equal. Note that the basis
B2 gotten on the other side of the Relu in this case is actually the same as B′

1.

5 Experiments

We have implemented this in Python, using the numpy and scipy libraries for
linear algebra and LP solving, respectively. Our experiments were run on an
Intel i7 9750H processor with 6 cores and 12 threads with 32 GB RAM. The
artifacts are available for evaluation at https://github.com/digumx/permcheck/
tree/nfm22.

We have compared our algorithm with the Marabou [13,14] implementation
of the Reluplex [12] on a few DNNs of various sizes with the following target
behavior: for n inputs, there should be n outputs so that if input i is the largest
among all the inputs, output i should be 1. These networks have three layers

https://github.com/digumx/permcheck/tree/nfm22
https://github.com/digumx/permcheck/tree/nfm22
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excluding the input layer, with sizes 2n(n − 1), n(n − 1) and n respectively.
Formally, we check that 0 ≤ x ≤ 1 ⇒ |σ(N (x)) − N (σ(x))| ≤ ε, where σ
represents the permutation sending 1 → 2, 2 → 3· · ·n → 1 cyclically, and ε varies
across the experiments. Note that if the network follows the target behavior, then
this property should hold.

We first demonstrate our algorithm on a set of hand-crafted networks solving
the above problem for which we have manually fixed the weights. The network
has been manually engineered so that the first and second layers perform pairwise
comparisions of the input, and the third layer combines the results of these
comparisions logically to produce the output.

In general, as the input to the above DNN varies within the precondition
region, the input to the Relu nodes can regularly switch between positive and
negative. This can potentially lead to an exponential blowup in the number of
case-splits. However, since permuting the inputs of this DNN leads to a more
complicated permutation of the intermediate layers, intuitively we should be able
to easily verify the property using an effective abstraction. The columns labelled
Safe of Table 1 compares the time taken by our algorithm and by Marabou
on these networks and demonstrates that the over-approximation and under-
approximation used in our algorithm form an effective abstraction for this exam-
ple, and is likely to be so for similar, symmetric networks.

We also test our algorithm on an unsafe problem using the same hand-crafted
network from the previous example. To do so, we change the permutation on the
output side to be the identity permutation, leading to a property that clearly
should never hold. The results are given in the columns labelled Unsafe of Table 1
and show that our counterexample search is able to find counterexamples in a
way that is competitive with Marabou, especially for networks with 8 or more
inputs.

Table 1. Comparison of Marabou and our algorithm on safe and unsafe synthetic
networks

Inputs Size Safe Unsafe

Our algorithm Marabou Our algorithm Marabou

Time Splits Time Splits

3 21 0.074 4.833 2046 0.048 0.187 68

4 40 0.112 >100.8 >11234 0.074 0.202 38

5 65 0.163 >101.9 >5186 0.132 0.267 47

6 96 0.269 >100.1 >2243 0.233 0.603 60

7 133 0.493 >106.8 >1533 0.422 1.085 64

8 176 0.911 >126.5 >475 0.809 71.89 299

9 225 1.477 >183.9 >467 1.508 5.011 91

10 280 2.276 >158.7 >394 2.157 29.09 202
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Finally, we compare the performance of our algorithm with Marabou on two
sets of trained DNNs. The first is a set of DNNs for the same problem that have
been trained using SGD to have the target behavior described above, using a
large number of randomly generated input and corresponding correct output for
training. We compare the algorithms on trained networks of various sizes, and
with various values of ε.

The results (Table 2) show that for these examples, most networks are unsafe,
and as the size of the network increases, both our algorithm and Marabou is able
to find counterexamples. However, the time taken by Marabou increases signif-
icantly for the larger networks, eventually timing out for the largest examples,
while our algorithm scales much better. The table also shows that for smaller
networks Marabou performs better than our algorithm. We believe this is due
to the inefficiencies in our prototype implementation compared to Marabou. For
some small networks, our algorithm is unable to find a proof or counterexam-
ple, however we believe this issue can be handled with a counterexample guided
refinement procedure in the future (Fig. 2).

Table 2. Comparison of Marabou and our algorithm on trained networks. the time is
given in seconds.

Network Our algorithm Marabou

n Size ε Accuracy Time Result Time Splits Result

3 21 0.1 94.0% 0.023 CEX 0.023 10 CEX

3 21 0.5 100% 0.249 INCONS 0.034 16 CEX

3 21 0.9 100% 0.204 INCONS 1.330 274 SAFE

5 65 0.1 97.1% 0.197 CEX 0.684 35 CEX

5 65 0.5 99.5% 0.188 CEX 0.682 35 CEX

6 96 0.1 98.0% 0.012 CEX 3.070 85 CEX

6 96 0.3 98.6% 0.018 CEX 3.138 85 CEX

7 133 0.1 87.5% 0.011 CEX 5.651 84 CEX

7 133 0.3 96.1% 0.012 CEX 5.810 86 CEX

8 176 0.1 65.7% 0.012 CEX 44.42 258 CEX

8 176 0.3 68.5% 1.584 CEX 42.80 258 CEX

9 255 0.1 58.4% 1.193 CEX >120.3 >228 TO

9 255 0.3 70.2% 1.310 CEX >127.9 >179 TO

10 280 0.1 20.8% 4.040 CEX >130.4 >58 TO

10 280 0.3 31.0% 3.966 CEX >125.0 >58 TO
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Fig. 2. Example craft paths (Color figure
online)

The second set of examples
involve DNNs that we have trained
to solve a smaller-scale simpler ver-
sion of the collision avoidance prob-
lem. Here, we consider a craft mov-
ing through 2D space with a given
initial position and velocity under
a given constant acceleration. The
DNN must take as input the initial
position, velocity and constant accel-
eration for a pair of crafts and deter-
mine weather they will collide. In the
attached figure, the green plots show
the trajectory of a non-colliding pair
of crafts, and the red plots show the

trajectory of a colliding pair in the dataset. There is an inherent symmetry to
this problem: if we swap the two crafts, the output of the DNN should remain
the same. We generated a dataset of 100000 pairs of craft position, velocity and
acceleration, labeled as colliding and non-colliding. On this dataset we trained
(using SGD) DNNs with various sizes, and used them to compare Marabou and
our method on the problem of verifying invariance under swapping for different
values of ε. The data is given in the Table 3.

Table 3. Comparison of Marabou and our algorithm on collision avoidance networks.

Network Our algorithm Marabou

Size ε Accuracy Time Result Time Splits Result

33 0.1 76.4% 0.059 CEX 0.123 27 CEX

33 0.5 97.2% 0.337 CEX 0.312 40 CEX

33 0.7 99.5% 1.440 INCONS 0.325 47 CEX

33 0.9 100% 1.679 INCONS >121.0 >12466 TO

52 0.1 81.6% 0.093 CEX 0.808 26 CEX

52 0.7 98.9% 10.13 INCONS 5.692 140 CEX

52 0.9 100% 10.94 INCONS >121.0 >4084 TO

90 0.1 90.0% 0.433 CEX 10.13 100 CEX

90 0.5 98.6% 1.906 CEX 10.07 101 CEX

90 0.9 100% 36.25 INCONS >121.0 >745 TO

138 0.1 92.3% 0.564 CEX 27.52 108 CEX

138 0.9 99.9% 31.34 INCONS >121.0 > 274 TO

318 0.1 91.7% 2.328 CEX >121.0 >118 TO

318 0.3 94.9% 2.373 CEX >121.0 >118 TO

318 0.5 96.8% 2.445 CEX >121.0 >118 TO

488 0.1 92.5% 10.15 CEX >121.0 >6 TO

488 0.3 94.5% 9.932 CEX >121.0 >6 TO
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The results (Table 3) demonstrate the performance of our algorithm on a
realistic example. Again we find that most of these networks are unsafe. However
for some networks our algorithm returns inconclusive and Marabou times out,
and these networks may indeed be safe. We again find that while Marabou is
faster on smaller networks, for the larger networks Marabou begins to time out
more and more frequently, while our algorithm scales much better. We also find
that for certain networks, our algorithm returns inconclusive, however the larger
of these networks are hard for Marabou as well.

Though small in number, our benchmarks are challenging due to their size
and complexity of verification. We attribute the efficiency of our approach to a
number of design elements that are crucial in our approach – a layer by layer anal-
ysis, abstractions (that help reduce case-splits), under-approximations (that lead
to good counterexamples), algebraic manipulations instead of LP/SMT calls, etc.
A downside of our algorithm is that it may sometimes return inconclusive. A
counterexample-guided refinement procedure can help tackle this issue.

6 Related Work

The field of DNN verification has gained significant attention in recent years.
DNNs are increasingly being used in safety- and business-critical systems, mak-
ing it crucial to formally argue that the presence of ML components do not
compromise on the essential and desirable system-properties. Efforts in formal
verification of neural networks have relied on abstraction-refinement [7,15,16],
constraint-solving [1,5,6,20], abstract interpretation [9,17,18], layer-by-layer
search [10,21], two-player games [22], dependency analysis [3] and several other
approaches [11,23].

The most closely related work to ours is using a DNN verification engine such
as Reluplex [12] and Marabou [13,14] to verify permutation invariance properties
by reasoning over two copies of the network. Reasoning over multiple copies also
comes up in the context of verifying Deep Reinforcement Learning Systems [8].
However, verification of DNNs is worst-case exponential in the size of the network
and therefore our proposal to handle permutation invariance directly (instead of
multiplying the network-size) holds a lot of promise.

Polytope propagation has been quite useful in the context of DNN verifi-
cation (e.g. [19,24]). In the case of forward propagation, however, it requires
computing the convex hull each time, which is an expensive. In contrast, our tie-
class analysis helps us propagate the affine regions efficiently. In the backward
direction, even though we rely on convex polytope propagation, we mitigate
the worst-case exponential blow-up by using a 2-polytope under-approximation
method that does not depend on LP or SMT solving, and is both scalable and
effective.

In general, the complexity of a verification exercise can be mitigated by
abstraction techniques, e.g. [2,7] for DNNs. The essential idea is to let go of an
exact computation, which is achieved by merging of neurons in [7]. In [15], the
authors propose construction of a simpler neural network with fewer neurons,
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using interval weights, to over-approximate the output range of the original
neural network. Our work is similar in spirit, in that it avoids exact computation
unless really necessary for establishing the property. In practice, these techniques
can even be used complementary to one another.

7 Conclusion

We presented a technique to verify permutation invariance in DNNs, based
on novel forward- and backward-propagation methods. Our approach is sound
(not just for permutation invariance properties, but for general safety properties
too), efficient, and scalable. It is natural to wonder whether the approximately
computed reach and safe regions may be refined to eliminate spurious coun-
terexamples, and continue propagation till the property is proved or refuted.
Our approach is definitely amenable to a counterexample-guided refinement. In
particular, the spurious counterexamples can guide us to split Relu nodes (to
refine over-approximations), and add additional safe regions (to refine under-
approximations). This would require us to maintain sets of affine regions and
convex polytopes at each layer, which is challenging but an interesting direction
to pursue.
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