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ABSTRACT
Proving correctness

1
of programs is a challenging task, and conse-

quently has been the focus of a lot of research. One way to break

this problem down is to look at one execution path of the program,

argue for its correctness, and see if the argument extends to the en-

tire program. However, that may not often be the case, i.e. the proof

of a given instance can be overly specific. In this paper, we propose

a technique to generalize from such specific-instance proofs, to de-

rive a correctness argument for the entire program. The individual

proofs are obtained from an off-the-shelf interpolating prover, and

we use Syntax-Guided Synthesis (SyGuS) to generalize the facts that

constitute those proofs. Our initial experiment with a prototype

tool shows that there is a lot of scope to guide the generalization

engine to converge to a proof very quickly.

CCS CONCEPTS
• Theory of computation → Invariants; • Software and its
engineering → Software verification; • Computing method-
ologies → Instance-based learning;
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1 INTRODUCTION
Computer programs may be regarded as formal mathematical ob-

jects whose properties are subject to mathematical proof [5]. How-

ever, proving properties of programs is a challenging task in prac-

tice, to say the least. The problem has worsened due to the increas-

ing complexity of real-world programs that are used to synthe-

size modern day hardware and software. Consequently, even the

state-of-the-art verification tools and techniques fail to analyze

1
Throughout this document, correctness refers to partial correctness of programs. We

do not consider the question of termination in this work.
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the correctness of an entire program, i.e. the set of all its possi-

ble executions/behaviors. It becomes natural to ask if one could

i) analyze a subset of the program executions, and ii) extend the

correctness argument for this subset, to the entire program. This

paper proposes an approach to do this automatically.

Given a program, one may isolate a subset of behaviors, i.e. find

an under-approximation, by fixing an unwinding for the loops.

For example, consider the program in Fig. 1 (a), and an under-

approximation of it in Fig. 1 (b) obtained with an unwinding of 2.

Like in this example, we assume that the property to be verified

is given as an assertion in the program. The under-approximate

program can be encoded as a logical formula, by transforming the

statements into the static single assignment (SSA) form, and given

to a theorem prover, e.g. Z3 [13]. The theorem prover may return

a counterexample to the correctness of the under-approximate

program (in which case the original program is indeed unsafe), or

a proof that this (subset of behaviors) does not violate the property.

Such resolution proofs, however, are not quite usable directly.

One possible way to extract meaningful information from the

resolution proofs is to generate interpolants [12, 17] from them, us-

ing an interpolating theorem prover [21], e.g. CSIsat [4] or iZ3 [23].

Informally, an interpolant is a predicate that separates good pro-

gram states from bad ones, and thus helps in forming program

proofs. In particular, in our case, they can be used to construct a

Floyd-Hoare style proof of correctness of the under-approximate

program. While the interpolating provers have the ability to focus

on relevant facts, in most cases these facts are very specific to the

under-approximate program. As a result, the proof does not hold

for the original program. Nevertheless, these specific interpolants

are very often instantiations of more “general” facts, that might be

useful in establishing the correctness of the entire program at once.

Thus, this limitation of interpolating provers furnishing overly spe-

cific proofs can be worked around by generalizing from several

such proofs.

Syntax-Guided Synthesis (SyGuS) [2] is a recently proposed

framework for the program synthesis problem. An important aspect

of this framework is its ability to generate specifications, in a given

collection of templates (or, a grammar), from a set of examples. We

use a SyGuS solver to generalize the facts (interpolants) obtained

from interpolation proofs. The input to the solver is these facts, and

a grammar that specifies the template in which a generalized fact

is to be obtained. Employing an external generalization mechanism

like this allows us to use any off-the-shelf interpolating prover,

irrespective of whether the prover itself focuses on general facts or

not.

Our approach involves performing the following steps repeat-

edly, till either a counterexample or a proof is obtained:

• constructing under-approximations of the original program

https://doi.org/10.1145/3183399.3183412
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• generating proofs of their correctness, using an interpolating

prover (or returning unsafe if a counterexample is found)

• using a SyGuS solver to generalize the facts, and strengthen-

ing/refining them as required.

Note that this algorithm may not converge in every case, as

program verification is undecidable in general.

The core contribution of this paper is a novel technique that com-

bines interpolation and SyGuS, for generalizing specific-instance

proofs into a proof of the entire program.

Outline of the paper We start with an illustrative example in

the next section, followed by a discussion on the related work in

Section 3. Section 4 presents the core elements of our approach. We

conclude in Section 5, and lists interesting directions of pursuing

this further.

2 ILLUSTRATIVE EXAMPLE
Consider the program shown in Fig. 1 (a). The variables x and

y are assigned 0 initially, and are then incremented in a loop an

unknown number of times. Then, in another loop, both the variables

are decremented as long as both x and y are non-zero. At this point,

it is asserted that both the variables are zero. This is a safe program,

i.e. there does not exist a feasible path from the initial state to an

assertion violating state.

int x = 0;
int y = 0;

while(*){
x++; y++;

}

while(x != 0 && y != 0){
x--; y--;

}

assert(x == 0 && y == 0);

(a)

int x = 0;
int y = 0;

x++; y++;
x++; y++;

assume(x != 0 && y != 0);
x--; y--;

assume(x != 0 && y != 0);
x--; y--;

assume(x == 0 || y == 0);
assert(x == 0 && y == 0);

(b)

Figure 1: Example program (a), and a specific path in it with
an unwinding of 2 (b)

Let us consider an execution path of this program, shown in

Fig. 1 (b), that goes through both the while loops twice. We start

by looking for a proof of correctness of this specific instance. Our

approach is to transform the program into SSA form, encode the

statements and the negated assertion as a logical formula, and see

if the formula is satisfiable. This can be done using an interpolating

theorem prover, e.g. iZ3. When invoked with the constraints shown

in Fig. 2 (a), iZ3 return a set of interpolants as the unsat proof (see

Fig. 2 (b)).

While we did obtain a proof of correctness of the specific case,

this particular proof is not of much interest to us. The reason being

that this proof does not generalize. In other words, it uses facts

that can only help in proving this instance correct (see the proof in

Fig. 3). These facts are not relevant to the correctness of the entire

program, or even for a different instance of the program, e.g. when

both the while loops are executed thrice. This happens with every

instance of the program in Fig. 1 (a) that we attempt to prove and

(compute-interpolant
(and (= x0 0) (= y0 0))
(and (= x1 (+ x0 1)) (= y1 (+ y0 1)))
(and (= x2 (+ x1 1)) (= y2 (+ y1 1)))
(and (not (= x2 0)) (not (= y2 0)))
(and (= x3 (- x2 1)) (= y3 (- y2 1)))
(and (not (= x3 0)) (not (= y3 0)))
(and (= x4 (- x3 1)) (= y4 (- y3 1)))
(or (= x4 0) (= y4 0))
(not (and (= x4 0) (= y4 0))))

(a)

unsat
(and (= 0 y0) (= 0 x0))
(and (= 1 y1) (= 1 x1))
(and (= 2 y2) (= 2 x2))
(and (= 2 y2) (= 2 x2))
(and (= 1 y3) (= 1 x3))
(and (= 1 y3) (= 1 x3))
(and (= 0 y4) (= 0 x4))
(and (= 0 y4) (= 0 x4))

(b)

Figure 2: Input formula for the interpolating theorem
prover iZ3 (a), and the interpolants obtained as unsat proof
(b)

{True} x = 0; y = 0; {(x = 0) && (y = 0)}

{(x = 0) && (y = 0)} x++; y++; {(x = 1) && (y = 1)}

{(x = 1) && (y = 1)} x++; y++; {(x = 2) && (y = 2)}

{(x = 2) && (y = 2)} assume((x != 0) &&
(y != 0)); {(x = 2) && (y = 2)}

{(x = 2) && (y = 2)} x--; y--; {(x = 1) && (y = 1)}

{(x = 1) && (y = 1)} assume((x != 0) &&
(y != 0)); {(x = 1) && (y = 1)}

{(x = 1) && (y = 1)} x--; y--; {(x = 0) && (y = 0)}

{(x = 0) && (y = 0)} assume((x == 0) ||
(y == 0)); {(x = 0) && (y = 0)}

{(x = 0) && (y = 0)} assert(not((x == 0)
&& (y == 0))); {False}

Figure 3: Floyd-Hoare proof of correctness of the program in
Fig. 1 (b), obtained from the interpolants shown in Fig. 2 (b)

we end up with a diverging set of proofs. Instead, what we wish to

obtain is a general proof that works for every instance, i.e. a proof

of the entire program.

To obtain a general proof of correctness, we attempt to gen-

eralize the facts in the seemingly divergent set of proofs. This

generalization is performed using a Syntax-Guided Synthesis tool,

e.g. CVC4-1.5 [25] or EUSolver [3]. Consider the facts available just

before the while loops in the program as shown in Fig. 1 (a). For an

unwind of 2, the facts at the loop-head of the second loop are: {(x
= 2) ∧ (y = 2)}, {(x = 1) ∧ (y = 1)} and {(x = 0) ∧ (y = 0)}.
These facts are given as input to the SyGuS solver (CVC4-1.5, in

our case) in order to obtain another fact, in a pre-specified syntax

(grammar), that generalizes the input facts.
This does not turn out to be the case, however. The reason being

that we only have positive examples to begin with. In other words,

we are asking the SyGuS solver to return a fact that is consistent

with {(x = 2) ∧ (y = 2)}, {(x = 1) ∧ (y = 1)} and {(x = 0) ∧
(y = 0)}. The solver may return a trivial answer, e.g. {x = x}. This
mandates a refinement step therefore. We perform the refinement

in a counterexample guided fashion, where the counterexamples

act as negative examples during the synthesis.
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Obtaining counterexamples at this stage is easy, given the (trivial)

invariant is insufficient to prove the property. We use Cbmc [11], a

bounded model checker for C programs, for this purpose. The input

to Cbmc is a modification of the original program - all loops are

replaced by non-deterministic assignments to the variablesmodified

within that loop, under the constraint that the fact returned by the

SyGuS solver holds at the corresponding program point. Cbmc

returns a counterexample: {x = 268435456 ∧ y = 0}, showing
insufficiency of the invariant {x = x} in proving the property.

This counterexample is given to the SyGuS solver, along with the

other facts. Now, we ask the solver to return a fact that is consistent

with {(x = 2) ∧ (y = 2)}, {(x = 1) ∧ (y = 1)} and {(x = 0) ∧
(y = 0)}, but inconsistent with {x = 268435456 ∧ y = 0}. This
solver returns {x ≤ y}, and the process is repeated. This gives us

one more negative example, and the SyGuS solver converges to the

desired invariant, {x = y}, in the third iteration.

It must be noted that this refinement process may itself diverge,

with a new counterexample each time. It is therefore important

to switch back and forth between adding positive examples (more

proofs, obtained from different under-approximations), and neg-

ative ones (more counterexamples). There are several heuristics

that can be used to guide this search. We are experimenting with

them, and we plan to publish these heuristics along with their

performance results soon.

Once a strong enough invariant is obtained for the second loop,

we shrink the original program by replacing the loop with an as-

sertion that says the invariant must hold. And then we repeat this

till we find an invariant for the first loop, which is {x = y} again
in this case. A proof based on this fact indeed generalizes every

specific instance proof that was obtained from the interpolating

prover.

3 RELATEDWORK
The novelty of our work lies in connecting interpolation and gener-

alization, using SyGuS. Since these techniques have been well-

studied in various different contexts, we can only give a brief

overview of the vast amount of relevant literature.

Interpolants have been used in a variety of applications in com-

puter science, ranging from realizability of specifications [7], to

formal verification of software [17, 22] and hardware systems [20].

Albarghouthi et al. [1] look at proofs of bounded collection of pro-

gram executions to derive an invariant using Craig interpolation

methods [10, 19, 21]. Their approach is based on the heuristic that

simpler proofs are more likely to generalize, i.e. their focus is on

an interpolant generator that constructs simple interpolants (or,

facts). Instead, our approach takes the interpolants [23] generated

from off-the-shelf provers as is, but uses syntax guided synthesis to

derive conjectured invariants in a syntactic template (a grammar).
Generalization has been used, for both proofs and counterexam-

ples, to tackle the scalability issue in verification of large systems.

For example, in IC3 [6], a counterexample to induction is gener-

alized in order to refine over-approximations of sets of reachable

states [15]. In a recently proposed interactive system, Ivy [24], users

guide the system to generalize such counterexamples to induction,

till an inductive invariant is found. This is not just limited to coun-

terexamples. Heizmann et al. [16] look at correctness arguments

and then generalize, as an automaton, the set of executions for

which the same argument applies. This is close to a compositional

approach where one may argue about program correctness by sep-

arately arguing about subsets of executions that cover the entire

program. In contrast, we attempt to generalize the argument itself

so that it becomes applicable to the program in general.

Syntax Guided Synthesis has received a lot of attention in the

recent years, as a useful framework for the program synthesis

problem. This has led to advancements, in research as well as in

tools [3, 14, 25]. Our approach directly benefits from these - an

efficient tool helps lead to quicker convergence during the general-

ization step.

4 OUR APPROACH
Our technique utilizes the ability of interpolating provers to focus

on “relevant” facts, and that of SyGuS solvers to generalize the

specific-instance facts into a general proof. The important elements

of our approach are as follows.

4.1 Under-approximation
We consider under-approximations of the input program and look

for correctness arguments only for those paths that are there in

the under-approximation. These under-approximations may be

chosen such that the theorem prover comes up with a proof quickly.

Limiting the loop unwindings (e.g. as in our illustrative example,

Fig. 1 (b)), is one way to restrict the set of program behaviors.

However, other under-approximations would work equally well.

For instance, one may add assume(condition) statements in the

program to disallow certain paths. A program execution goes past

an assume statement only if condition evaluates to true at that point.

4.2 Interpolation Proofs
We use interpolating provers (e.g. iZ3 [23], MathSAT 5 [9], SMTIn-

terpol [8], CSIsat [4]) to prove correctness of under-approximate

program, or to refute them with a counterexample. By obtaining

interpolants from proofs, we focus on facts that are relevant and

avoid deducing information that is irrelevant to the analysis. We

transform the under-approximate program into SSA form, and con-

struct a logical formula that encodes program statements and the

negation of the assertion. The prover either returns unsat, followed
by a refutation proof (see Fig. 2 (b)) that establishes correctness of the
under-approximated program, or it may return sat, which means

that the original program is unsafe. The refutation proof may in-

volve facts that are general, although that is infrequently the case.

In most cases, a generalization is needed as the proofs are overly

specific to the input instance.

4.3 Generalization
The generalization is done in our approach with the help of a SyGuS

solver. The synthesis problems that we solve takes as input positive

examples (the proofs obtained from interpolating provers), negative

examples (counterexamples obtained from Cbmc), and a grammar

that defines the set of possible templates for the general fact. In

the absence of negative examples, the solver may return a trivial

invariant as shown in the illustrative example. It is noteworthy

that a relevant generalization may help the overall proof converge
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rapidly, whereas an irrelevant generalization may result in explo-

sion of the proof search, or even divergence. Therefore, one needs

to carefully design a set of heuristics to guide the generalization

engine to converge quickly.

4.4 Refinement or Strengthening
A refinement is invariably needed in our approach, and is guided

by a set of heuristics. At each step of generalization, the technique

needs to decide if a) a positive example should be added to the

synthesis problem given to SyGuS (by adding proofs of new under-

approximations), b) a negative example should be added (using

Cbmc to produce a counterexample, showing insufficiency of the

invariant synthesized so far), or c) a strengthening is required, i.e.
the positive examples (proofs) need to be enriched with additional

facts about other program variables. For example, the invariant {x
= y} cannot be obtained if the proofs contain facts about y alone.

We have built a prototype tool that implements our idea, and

have tested it on several sample programs. The initial results look

promising. At the link https://www.cmi.ac.in/~madhukar/ sein/ we
present artifacts that describe, step-by-step, how the tool performs

on selected examples.

5 CONCLUSION AND FUTUREWORK
Our work integrates two well-studied techniques - interpolation

and syntax based generalization - to verify programs with respect to

a given assertion. It starts with under-approximations of the original

program and attempts to prove them safe. If a counterexample is

found, then the original program is reported unsafe. However, if

a proof is obtained, a generalization is attempted to extend the

proof to the original program. The crucial aspect of our approach

is that the techniques complement one another - interpolation has

the ability to focus on what is important, but it can get overly

specific, whereas generalization with SyGuS can exactly remove

this specificity.

In the immediate future, we plan to develop our prototype tool

into a mature software, and add several heuristics to make it effi-

cient. It would also be interesting to see if the generalizer could

be guided by an oracle, instead of examples, as in Oracle-Guided

Synthesis [18]. We would also like to see if SyGuS itself could be

tweaked for our purpose. For example, by (minimally) refining the

grammar automatically, if the tool is struggling to furnish an in-

variant in the given grammar. We plan to take up these research

directions as we go ahead.
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