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ABSTRACT
We look at the problem of deciding correctness of a programming
assignment submitted by a student, with respect to a reference
implementation provided by the teacher, the correctness property
being output equivalence of the two programs. Typically, program-
ming assignments are evaluated against a set of test-inputs. This
checks for output equivalence, but is limited to the cases that have
been tested for. One may compose the programs sequentially and
assert at the end that the outputs must match. But verifying such
programs is not easy; the proofs often require that the functionality
of every component program be captured fully, making invariant in-
ference a challenge. One may discover mismatches (i.e., bugs) using
a bounded model checker, but their absence brings us back to the
question of verification. In this paper, we show how a hypersafety
verification technique can effectively be used for verifying correct-
ness of programming assignments. This connects two seemingly
unrelated problems, and opens up the possibility of employing tools
and techniques being developed for the former to efficiently address
the latter. We demonstrate the practicability of this approach by
using a hypersafety verification tool named weaver and several
sample assignment problems.

CCS CONCEPTS
• Software and its engineering → Formal methods; Correct-
ness; • Theory of computation→ Program reasoning.
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1 INTRODUCTION
In a celebrated paper about half a century back [14], C. A. R. Hoare
remarked that computer programming is an exact science – in that
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all the properties of a program, and the consequences of executing
it in any given environment can, in principle, be found from the
text of the program itself by means of purely deductive reasoning.
One of the most important properties of a program is whether or
not it carries out its intended function. If it indeed does, a way
of establishing this could be that the programmer provides the
required reasoning herself, as annotations or lemmas that hold
true at different program points. But this is difficult for a number
of reasons – how to generate these annotations/lemmas, how to
know that the lemmas themselves are correct, and how to know
that all lemmas together suffice for the proof. It is at this point that
automated program verification comes to the rescue.

This paper addresses the problem of verifying programs sub-
mitted by students as assignments in an introductory program-
ming course. These programs are to be evaluated for correctness
with respect to the corresponding problem descriptions. Since such
courses usually attract a large number of students, it is not just
desirable but essential do this evaluation automatically. In order to
employ automatic program verification techniques, a formal spec-
ification is necessary to verify against. However, it is a difficult
task to derive such a specification automatically from the problem
statement. Therefore, we assume that a formal specification, in the
form of a reference implementation for the problem, has also been
provided by the teacher. In particular, we assume that there is a
designated output variable where both the teacher and the students
are supposed to store the output computed by their program, and
a student’s program is said to be correct if it always produces the
same output as the teacher’s program.

A naive solution to this problem is to take the two programs
(the correct one by the teacher, and a proposed solution by a stu-
dent), sequentially compose them, and place an assertion at the
end that the outputs do match. This composed program may now
be given to any off-the-shelf verification tool. But the task is still
far from done; the verifier needs to capture full functionality of
both the programs, leading to complex invariants which are dif-
ficult to obtain, even for very simple programs and properties. A
cheaper alternative to verification that is usually taken in practice,
be it assignments in a programming course or real-world software,
is testing. A program can be tested for a number of test-cases to
gather empirical evidence of its correctness. With a large num-
ber of carefully chosen test-cases, it is indeed possible to capture
most of the bugs in any program or be convinced that there are
none. However, this process is inherently limited in the sense that
it cannot give correctness guarantees. Discovering shallow bugs
(i.e., cases of output mismatch) may also be done very efficiently
on the sequentially composed program by passing it to a bounded
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model checker (e.g. Cbmc [4]). But it suffers from the same problem
– it may only guarantee bounded safety, not safety in general.

This paper connects the problem of verifying programming as-
signments to that of hypersafety verification. Hypersafety verifica-
tion (or, verification of hypersafety properties) is a problem that
has gained a lot of interest in the last few years [9, 27]. A hyper-
safety property describes the set of valid interrelations between
multiple finite runs of a program. In particular, a k-safety property
is one whose violation is witnessed by at least k finite runs of a
program [5]. Azadeh et al. have very recently proposed an effec-
tive approach [9] for proving k-safety properties by composing k
(memory-disjoint) copies of the program in parallel, and looking
for a reduction of the composed program which: i) is easier to prove,
and ii) when proved correct, would imply that the composed pro-
gramwas correct too. A reduction is typically obtained by removing
redundant traces owing to statements that are independent. The
focus of their technique is to look for a good reduction, i.e. one
that admits a simple proof. With this in mind, we propose a novel
approach of verifying programming assignments – by sequentially
composing the reference and student’s programs, and looking for
a reduction that is easy to prove. We also explored the feasibility
of this idea through an initial set of experiments, by using a hy-
persafety verification tool named weaver1 to verify several sample
assignment problems.

The core contributions of this paper are:
• an idea – that verification of an assignment program wrt
a correct implementation can be done by finding a reduc-
tion, of their sequential composition, that is both easy and
sufficient to prove (in a way similar to [9]), and

• its demonstration – that this is not only practically feasible,
but also an efficient way to address this problem.

Outline of the paper We now start with an illustration of the
hypersafety verification technique of [9], and a few examples that
demonstrate our idea (Sect. 2). After that, we present an informal
sketch of how the approach works, and point to the artifacts from
our initial experiments on this (Sect. 3). This is followed by a dis-
cussion of the related work in Sect. 4. Finally, Sect. 5 concludes the
paper and suggests interesting directions of pursuing this further.

2 ILLUSTRATIVE EXAMPLE
We briefly illustrate the hypersafety verification technique of [9],
by taking an example from that paper itself. Consider the program
shown in Listing 1 (i). The program takes as input two non-negative
numbers and multiplies them. Let us say that we wish to prove that
multiplication distributes over addition. For that, consider three
copies of the multiplication program, shown in Listing 1 (ii), (iii),
and (iv), with inputs as ⟨(a + b), c⟩, ⟨a, c⟩, ⟨b, c⟩. Now, if these three
copies are composed sequentially, then the analysis requires non-
linear invariants to be deduced. In particular, at the end of the first
copy, we would need to know that x1 = (a + b) ∗ c . On the other
hand, if we can discover a reduced program like the one shown in
Listing 2, it suffices to have a linear loop invariant x1 = x2+x3. This
loop invariant is inductive for both loops in the reduced program,
and is also sufficient to prove the property. Note that the crux of

1an implementation from Azadeh et al. [9], available at https://github.com/weaver-
verifier/weaver

1 i n t a , b ;
2 i n t i = 0 , x = 0 ;
3
4 whi l e ( i < a )
5 x = x + b ;
6 i = i + 1 ;

(i)

1 i n t a , b , c ;
2 i n t i 1 = 0 , x1 = 0 ;
3
4 whi l e ( i 1 < a + b )
5 x1 = x1 + c ;
6 i 1 = i 1 + 1 ;

(ii)

1 i n t a , c ;
2 i n t i 2 = 0 , x2 = 0 ;
3
4 whi l e ( i 2 < a )
5 x2 = x2 + c ;
6 i 2 = i 2 + 1 ;

(iii)

1 i n t b , c ;
2 i n t i 3 = 0 , x3 = 0 ;
3
4 whi l e ( i 3 < b )
5 x3 = x3 + c ;
6 i 3 = i 3 + 1 ;

(iv)

Listing 1: Illustrative example for hypersafety verification

1 i n t a , b , c ;
2 i n t i 1 = 0 , i 2 = 0 , i 3 = 0 ;
3 i n t x1 = 0 , x2 = 0 , x3 = 0 ;
4
5 whi l e ( i 2 < a )
6 x1 = x1 + c ; i 1 = i 1 + 1 ;
7 x2 = x2 + c ; i 2 = i 2 + 1 ;
8
9 whi l e ( i 3 < b )
10 x1 = x1 + c ; i 1 = i 1 + 1 ;
11 x3 = x3 + c ; i 3 = i 3 + 1 ;

Listing 2: Reduction of Listing 1

the technique is to find a reduction which captures all program
behaviors, and is also easy to prove at the same time. Their tool,
weaver, does this efficiently by solving these problems together. I.e.,
it searches for the reduction and its proof at the same time.

Consider the code shown in Listing 3. This solves the task of
multiplying two integers given as input. Let us say the teacher
solves it by going in a loop from 1 to the first integer input, and
adding the second input to a sum (initially 0) each time. The student,
on the other hand, does it in the other order – she goes from 1 to
the second integer input, and adds the first input each time. For
verifying a program that sequentially composes these components,
a non-linear invariant a ∗ b = b ∗ a is needed. The code was given
to VeriAbs2, but the tool timed out after 900 seconds and failed
to verify the program. An equivalent code (in the weaver’s input
format) was given to weaver for verification and it was able to
verify that quickly.

Correct/Reference version

1 i n t i = 0 , m = 0 ;
2
3 whi l e ( i < b )
4 m = m + a ;
5 i = i + 1 ;
6
7 r e t u r n m;

Student version
1 i n t i = 0 , m = 0 ;
2
3 whi l e ( i < a )
4 m = m + b ;
5 i = i + 1 ;
6
7 r e t u r n m;

Listing 3: Multiplication of positive integers

2VeriAbs [8] has been the winner in the ReachSafety category at SV-COMP for last
two years [2, 21]
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For another example, consider the problem in listing 4. The task
here is to find the the sum of all the multiples of 3 or 5 below 1000,
and was adapted from a problem from an online programming
problems repository. Here the student version is incorrect. When
given to VeriAbs, it timed out after 900 seconds and failed to check
correctness, while weaver was able to find a proof for incorrectness.

Correct/Reference version

1 i n t s = 0 , i = 1 ;
2 i n t m3 = 0 , m5 = 0 ;
3
4 whi l e ( i < 1 0 0 0 )
5 m3 = i ; m5 = i ;
6
7 whi l e ( 0 < m3 )
8 m3 = m3 − 3 ;
9 whi l e ( 0 < m5 )
10 m5 = m5 − 5 ;
11
12 i f ( ( m3 == 0 ) | |
13 (m5 == 0 ) )
14 s = s + i ;
15
16 i = i + 1 ;
17 r e t u r n s ;

Student version
1 i n t s = 0 , i = 1 ;
2 i n t m3 = 0 , m5 = 0 ;
3
4 whi l e ( i < 1 0 0 0 )
5 m3 = i ; m5 = i ;
6
7 whi l e ( 0 < m3 )
8 m3 = m3 − 3 ;
9 whi l e ( 0 < m5 )
10 m5 = m5 − 5 ;
11
12 i f ( ( m3 == 0 ) &&
13 (m5 == 0 ) )
14 s = s + i ;
15
16 i = i + 1 ;
17 r e t u r n s ;

Listing 4: Finding the sum of all multiples of 3 and 5

The problem in listing 5 is that of primality testing. Here, we
composed two copies of the same program, assuming that the stu-
dent’s implementation is same as that of teacher’s. Once again, we
were able to verify this with weaver, while VeriAbs timed out.

1 i n t i = 2 ; i n t j ;
2 boo l b_break = f a l s e ;
3 boo l i s _p r ime = t r u e ;
4
5 whi l e ( ( i < n ) && ( ! b_break ) )
6 j = i ;
7 whi l e ( j < n )
8 j = j + i ;
9 i f ( j == n )
10 i s _p r ime = f a l s e ; b_break = t r u e ;
11 i = i + 1 ;
12 r e t u r n i s _p r ime ;

Listing 5: Primality testing for natural numbers

3 OUR APPROACH
We have seen, with the examples illustrated in the previous sec-
tion, how the problem of verifying that two programs give the
same output may be addressed using a technique for automated
hypersafety verification. Here, we give an intuitive idea of why
this works. We have seen that an off-the-shelf verification tool
struggles to do this, for the reason that full-functionalities of all
component programs need to be captured and that may lead to
complex invariants. Weaver works around this problem by finding
a reduction of the composed program, and proving that correct.
This is sound, because the reduction (equivalently, a set of traces of
the composed program) is chosen such that it is representative of all
possible behaviors. The way to obtain a reduction is to exploit the
independence relation between statements of the program, and re-
move redundant traces. For example, if s and s ′ are two independent

statements (say, if they are from separate components), then a re-
duction need not capture the trace ⟨P ; s ′; s ;Q⟩, if it already captures
⟨P ; s; s ′;Q⟩ (where P and Q are sequences of program statements).
This is inspired by partial-order reduction techniques for verifying
concurrent programs [11]. However, a reduction obtained like this
may also be difficult to prove. To deal with this, weaver does not
construct a reduction separately and looks for its proof. Instead, it
finds a set of reductions simultaneously with a proof that can prove
at least one of the reductions in the set. The set of reductions, by
construction, have the property that a proof of any member of the
set establishes the correctness of the original, composed program.

Weaver does the above in a counterexample-guided fashion, us-
ing an interpolating prover as an oracle. We do not give the details
of their algorithm due to lack of space. Besides, that is not the focus
of this paper; our purpose here is to relate the two problems and
demonstrate that this can indeed be done in practice. Apart from
the examples illustrated in Sect. 2, we have tried the proposed ap-
proach on a few more sample assignment problems. Those problem
statements, along with the corresponding programs (both in C, and
in weaver’s input format), and the results have been made available
at http://bit.ly/nier2020 as artifacts. It must be noted that the input
format of weaver, and converting to it, is currently a limitation of
our approach. Our immediate goal is to work on an implementation
that overcomes this.

4 RELATEDWORK
The novelty of our work lies in connecting a hypersafety verifica-
tion technique, with correctness of programming assignments – in
particular, to show that a reduction based technique for the former
can effectively be used for the latter. Since evaluation of program-
ming assignments has been studied in many different contexts, we
only give a brief overview of the relevant literature.

There are several steps involved in programming assignment
assessment [12, 18, 22], e.g. checking for plagiarism, testing correct-
ness of the program, giving valuable feedback, etc. Our focus is on
evaluating the correctness of programs, for which testing is themost
commonly applied approach [12, 18]. However, it is incomplete in
the sense that it may uncover bugs but cannot provide correctness
guarantees. It can be argued that plagiarism checking, in a manner,
tests for similarity of student program against given references, but
this testing is usually done in a superficial manner. These methods
cannot be adapted as such to create a robust correctness checker.
There are also methods of plagiarism check [6, 7, 15] that can possi-
bly be adapted for this task, but it is not clear if they would lead to
complete approaches or not. There has been work aimed at more
complete approaches e.g. [17], where semantic notions of execution
paths are used to check for correctness. But a proof may still be
difficult to find. Our approach, though semantic, differs in that it
looks for a reduction that admits a simple, easy-to-find proof.

The problem of checking correctness of programming assign-
ment against a reference implementation is ultimately an instance
of program equivalence checking. Equivalence checking for se-
quential programs has been studied well in the context of semantic
alignment [3], translation validation [16, 28], design and verifi-
cation of compiler optimizations [19, 29], and program synthesis
and superoptimization [1, 24]. A common approach to proving
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equivalence is constructing a simulation relation between a pair
of programs. This can be done either by static analysis or a data
driven analysis [10, 20, 23, 25, 26]. A drawback of this approach is
the need for execution runs to have adequate coverage of the pro-
gram. Gupta et al. present a static analysis based simulation relation
construction for proving equivalence [13]. They do an incremental
construction of a simulation relation, where at each incremental
step, the invariants at the currently correlated program locations
are inferred and future correlations are guided through the invari-
ants inferred thus far. The pattern of using counterexamples to
guide the search is found in weaver as well. Since the problem is
undecidable in general, such patterns for searching can often be
used to achieve better performance.

5 CONCLUSION AND FUTUREWORK
This paper connects two important problems in program verifica-
tion – one of verifying programming assignments with respect to
a correct program that is given, and the other of verifying hyper-
safety properties. This opens up the possibility of using techniques
and tools being developed for hypersafety verification, to prove
assignment programs correct. It also encourages us to speak about
provable correctness of programming assignments, in contrast to
the popular practice of only testing them.

For an idea paper like this one, it is imperative that there be a
number of interesting directions of pursuing it further. An imme-
diate goal, of course, is to work on the scalability of the proposed
approach. This will enable a large class of applications for this tech-
nique, from verifying arbitrary assignment programs, to even doing
an incremental analysis of software across its multiple versions.
Another direction that looks worthwhile to explore is whether we
can take advantage of the fact that this is only a 2-safety problem,
and not the general k-safety one. It would also be interesting to see
if the search for reductions may be combined with the search for a
suitable abstraction; this would be useful given that the technique
works in a counterexample-guided fashion anyway. The intent here
being that abstractions would lead to even simpler proofs, that are
a lot more easier to find.
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