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Abstract—
The generation of adversarial inputs has become a crucial issue

in establishing the robustness and trustworthiness of deep neural
nets, especially when they are used in safety-critical application
domains such as autonomous vehicles and precision medicine.
However, the problem poses multiple practical challenges, in-
cluding scalability issues owing to large-sized networks, and the
generation of adversarial inputs that lack important qualities
such as naturalness and output-impartiality. This problem shares
its end goal with the task of patching neural nets where small
changes in some of the network’s weights need to be discovered
so that upon applying these changes, the modified net produces
the desirable output for a given set of inputs. We exploit this
connection by proposing to obtain an adversarial input from a
patch, with the underlying observation that the effect of changing
the weights can also be brought about by changing the inputs
instead. Thus, this paper presents a novel way to generate
input perturbations that are adversarial for a given network by
using an efficient network patching technique. We note that the
proposed method is significantly more effective than the prior
state-of-the-art techniques.

INTRODUCTION

Deep Neural Networks (DNNs) today are omnipresent. An

important reason behind their widespread use is their ability to

generalize and thereby perform well even on previously unseen

inputs. While this is a great practical advantage, it may some-

times make DNNs unreliable. In safety- or business-critical

applications this lack of reliability can indeed have dreadful

costs. Evidently, central to a trained network’s unreliability

lies the lack of robustness against input perturbations, i.e.,
small changes to some inputs cause a substantial change in

the network’s output. This is undesirable in many application

domains. For example, consider a network that has been

trained to issue advisories to aircrafts to alter their paths

based on approaching intruder aircrafts. It is natural to expect

such a network to be robust in its decision-making, i.e. the

advisory issued for two very similar situations should not be

vastly different. At the same time, if that is not the case,

then demonstrating the lack of robustness through adversarial
inputs can help not only in improving the network but also

in deciding when the network should relinquish control to a

more dependable entity.

Given a network and an input, an adversarial input is one

that is very close to the given input and yet the network’s

outputs for the two inputs are quite different. In the last

several years, there has been much work on finding adversarial

inputs [1]–[5].

These approaches can be divided into black-box and white-

box methods based on whether they consider the network’s

architecture during the analysis or not. A variety of tech-

niques have been developed in both these classes, ranging

from generation of random attacks [4], [5] and gradient-based

methods [3] to symbolic execution [6]–[8], fault localiza-

tion [9], coverage-guided testing [1], [2], and SMT and ILP

solving [10]. However, there are several issues that limit the

practicability of these techniques: a poor success rate, a large

distance between the adversarial and the original input (both

in terms of the number of input values changed and the degree

of the change), unnatural or perceivably different inputs, and

output partiality (the techniques’ bias to produce adversarial

examples for just one of the network’s outputs). This paper

presents a useful approach to generating adversarial inputs in

a way that addresses these issues.

We relate the problem of finding adversarial inputs to the

task of patching neural nets, i.e. applying small changes in

some of the network’s weights so that the modified net behaves

desirably for a given set of inputs. Patching DNNs is a topic of

general interest to the Machine Learning community because

of its many applications, which include bug-fixing, watermark

resilience, and fine-tuning of DNNs, among others [11]. In-

tuitively, the relation between these two problems is based

on the observation that a patch can be translated into an

adversarial input because the effect of changing the weights

may be brought about by changing the inputs instead. In fact, a

patch in the very first edge-layer of a network can very easily

be transformed into a corresponding change in the input by just

solving linear equations. While there are techniques to solve

the patching problem [11], [12], it is in general a difficult task,

particularly for layers close to the input layer. The computation

of the entire network needs to be encoded and passed to

a constraint solver in order to obtain a patch. For large-

sized networks, this gives rise to a big monolithic constraint

leading to scalability issues for the solver. We address this

by proposing an improvement in the technique of [11], and

then using it repeatedly to find a middle-layer patch and chop

off the latter half of the network, till a first-layer patch has

been obtained. Our improved patching technique not only

gives us a smaller patch, but when used with our adversarial
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image generation technique, it also helps in the generation

of more natural adversarial inputs. Our experiments on three

popular image-dataset benchmarks show that our approach

does significantly better than other state-of-the-art techniques,

in terms of the naturalness and the number of pixels modified

as well as the magnitude of the change. This reflects in the

quality of the adversarial images, both visually and in several

qualitative metrics that we present later.

The core contributions of this paper are:

• A novel approach of producing perturbations of inputs

which are adversarial for a given network, with the help

of an efficient patching technique1.

• An extensive experimental evaluation using CIFAR-

10 [13], MNIST [14], and ImageNet [15] datasets, and a

number of qualitative parameters, to show the efficacy of

our approach over the state-of-the-art.

RELATED WORK

The robustness of DNNs has gained much attention in the

last several years as DNNs are permeating our lives, even

safety-and business-critical aspects. A number of techniques

have been developed to establish robustness or demonstrate the

lack of it through adversarial examples. These techniques are

broadly classified as black-box, gradient-based and white-box

approaches.

Black box methods do not consider the architecture of

DNNs in trying to argue about their robustness. Attacks based

on the L2 and L0 norms were introduced in [3]. These attacks

change the pixel values by some fixed amount and measure

their effectiveness by the decrease in confidence of the original

label.

Fast gradient sign method [4] is a gradient-based method,

which uses gradient of the neural network when the original

and modified images are fed to it. Output diversification [16] is

another gradient-based technique that aims at maximizing the

output diversity, which we measure using the Pielou score2.

These methods modify many pixels in the original image to

induce a misclassification which makes the adversarial image

visibly different from the original image.

White box methods, on the other hand, involve looking at

the complete architecture of the DNNs to obtain adversarial

inputs or argue that none exists. Verification of neural networks

using Symbolic execution is one such white box approach.

As discussed in [10], it translates the neural network into

an imperative program and uses SMT (Symbolic Modulo

Theory) based solver to prove given properties. However, such

techniques are not scalable due to exponential time complexity.

Symbolic propagation, as discussed in [8], [6] and [7] con-

verts inputs to symbolic representations and propagates them

through the hidden and output layers. But, these techniques

often give loose bounds and lack precision.

1Though not our primary contribution, our patching technique is an im-
provement over [11] (see Sect. -A).

2refer to Metrics of Evaluation (section -C in Experimental Setup)

Another white box technique is to find flaws in the training

phase of the neural network, such as the use of an inappro-

priate loss function [17], [18]. But, such techniques are still

vulnerable to adversarial attacks and can not be transferred or

used to test the robustness of existing DNNs. DeepFault [9]

uses fault localization, i.e., finding the areas of the network that

are mainly responsible for incorrect behaviors. Coverage-based

white box techniques use structural coverage metrics such

as neuron coverage and modified condition/decision coverage

(MC/DC). [19] developed a tool that uses MC/DC variants for

verification of neural networks using neuron coverage. [20],

[21] use mutation-based and genetic-algorithm based strategies

to generate test cases that can maximize neuron coverage. [1],

[2] implements a white-box approach that maximizes neuron

coverage and differential behavior of a group of DNNs.

Even though the code coverage criteria of software engi-

neering test methodologies correspond to neuron coverage,

it is not a useful indicator of the production of adversar-

ial inputs. According to authors in [22], Neuron coverage

statistics lead to the detection of fewer flaws, making them

inappropriate for proving the robustness of DNNs. They also

present three new standards – defect detection, naturalness,

and output impartiality – that can be used to gauge the quality

of adversarial inputs produced as alternatives to the L2 and L-

∞ norms. Their findings establish that the adversarial image

set generated using neuron coverage measures did not perform

well on these three standards.

Since our technique relies on finding modifications in

DNNs, we also discuss recent work in this respect. [11]

proposes a technique to find minimal modifications in a

single layer in a DNN to meet a given outcome. This work

has been extended further in [12] to come up with multi-

layer modifications by dividing the problem into multiple

subproblems and applying the idea of [11] on each one of

them. Our work proposes an improvement over their idea and

uses the improved technique to find small modifications, which

are then translated into adversarial inputs.

ILLUSTRATIVE EXAMPLE

Let us consider a toy DNN, N , shown in Fig. 1. It has two

neurons in each of its four layers – the input layer, followed

by two hidden layers, and then the output layer. We assume

that the hidden layers have ReLU3 as the activation function.

For neurons without an activation function, the value of a

neuron is computed by summing up, for each incoming edge

to the neuron, the product of the edge weight and the value of

the neuron at the edge’s source. In presence of an activation

function, the value is computed by applying the function on

this sum. For example, for the input 〈0.5, 0.5〉, the values at

the next three layers are 〈1, 0.5〉, 〈3.5, 1.5〉, and 〈−5,−6.5〉
respectively.

Finding an adversarial input 〈i1, i2〉 for the input 〈0.5, 0.5〉
amounts to finding a value for each ik (k ∈ {1, 2}) such that

|ik − 0.5| ≤ δ and the corresponding output o2 > o1, for

3ReLU(x) = max(0, x)
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1→-3/4

2→7/8

1/12←1/2

1/24←1/2

1/2→0 3/2→1/8 -6.5→-0.375
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i1

i2

x1

x2

x3

x4

o1
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Fig. 1: Adversarial inputs from first-layer modification. The adver-
sarial input and the corresponding values of each neuron are written
in red. The modification required in first layer weights are shown in
dotted boxes.

a given small δ. It is noteworthy that if we want the second

output to become bigger than the first one, this can be achieved

by modifying the weights instead of the inputs. For example,

if the edges connecting the second input neuron to the first

hidden layer had the weights 〈−0.75, 0.875〉 instead of 〈1, 2〉,
then the next three layers would have the values 〈0.125, 0〉,
〈0.25, 0.125〉, and 〈−0.5,−0.375〉, and our goal would be met

by modifying the weights while keeping the inputs unchanged.

We will come to the question of how to find the changed first-

layer weights in a bit, but let us first see how the changed

weights can help us obtain an adversarial input. This is a rather

simple exercise. Note that with the changed weights, the values

of the neurons in the first hidden layer were 〈0.125, 0〉. So,

our task is simply to find inputs for which the first hidden

layer values stay as 〈0.125, 0〉, but with the original weights

〈1, 2〉. This can be done by solving the following equations,

where δ1 and δ2 (δ1, δ2 ≤ δ ≤ 0.5, say) are the changes in

the two inputs respectively.

(1/2 + δ1) + (1/2 + δ2) = 1/8 (1)

−(1/2 + δ1) + 2 ∗ (1/2 + δ2) = 0 (2)

We get δ1 = −5/12, δ2 = −11/24 and, thus, the adversarial

input as 〈1/12, 1/24〉. The dotted rectangles in Fig. 1 contain

the adversarial inputs and the corresponding values at each

layer.

The first thing to notice here is that Eqn. 2 could have been

relaxed as −(1/2 + δ1) + 2 ∗ (1/2 + δ2) ≤ 0 because of the

ReLU activation function. This may give us smaller values

of δi’s. Moreover, along with minimizing the change in each

input pixel, we can also minimize the number of pixels that

are modified, as shown here.

(1/2 + δ1 ∗M1) + (1/2 + δ2 ∗M2) = 1/8 (3)

−(1/2 + δ1 ∗M1) + 2 ∗ (1/2 + δ2 ∗M2) ≤ 0 (4)

M1,M2 ∈ {0, 1}; minimize
∑

Mi (5)

In pratice, we solve these constraints in place of Eqns. 1-2;

this gives us better adversarial inputs.

There are a few more points to note before we proceed.

First, it is only the first-layer modification that may be easily

translated into an adversarial input as illustrated. Modification

in deeper layers are not immediately helpful; they cannot be

translated easily into an adversarial input because of the non-

linear activation functions. Second, we need to find small
modifications in the weights, so that the corresponding δi’s
in the inputs fall within the allowed δ. And, lastly, while

there are ways to compute a first-layer change directly using

an SMT or an ILP solver [11], this approach is not very

scalable in practice as large-sized networks give rise to big

monolithic formulas that may be difficult for the solver.

Instead, we propose an iterative approach that finds a middle-

layer modification using an improved version of [11]4 and

chops off the latter half of the network, repeatedly till a first-

layer patch is found.

Since our network has three edge-layers, we start by finding

a small modification of the weights in the second edge-layer

with which we can achieve our target of making o2 bigger

than o1 for the input 〈0.5, 0.5〉. We propose an εi,j change in

the weight of the jth edge in ith edge-layer, and encode the

constraints for o2 > o1 as follows:

x3 = max (0, 1 ∗ (2 + ε2,1) + 1/2 ∗ (3 + ε2,2)) (6)

x4 = max (0, 1 ∗ (1 + ε2,3) + 1/2 ∗ (1 + ε2,4)) (7)

−4 ∗ x3 + 5 ∗ x4 > 2 ∗ x3 − 8 ∗ x4 (8)

The range of each εi,j is [−α, α] if α is the biggest

permissible modification for an edge-weight. We minimize

the magnitude of the total change using Gurobi [23].

For the equations above, we get 〈ε2,1, ε2,2, ε2,3, ε2,4〉 =
〈−9/8,−17/4,−5/4,−1/4〉. These changes indeed make the

second output bigger (see Fig. 2).

Extracted Network

1/2 3/2→1/8 -6.5→-0.375

1 7/2→1/4 -5→-0.5

i11/2

i21/2

x1

x2

x3

x4

o1

o2

1

2

−1

1

2→7/8

1→3/4

3→-5/4

1→-1/4

2

5

−4

−8

Fig. 2: Middle-layer modification and sub-net extraction

Our next step is to extract a sub-network (see Fig. 2) and

look for a modification in its middle layer. Since the extracted

network has only two edge-layers, this step will give us a first-

layer modification. The equations, subject to the constraint that

x3 and x4 get the values 1/4 and 1/8 respectively, are shown

below.

x1 = max (0, 1/2 ∗ (1 + ε1,1) + 1/2 ∗ (1 + ε1,2)) (9)

x2 = max (0, 1/2 ∗ (−1 + ε1,3) + 1/2 ∗ (2 + ε1,4)) (10)

4We have described the improved version in the next section. We also show
the improvement quantitatively in the results section.
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2 ∗ x1 + 3 ∗ x2 = 1/4; 1 ∗ x1 + 1 ∗ x2 = 1/8 (11)

Gurobi gives us the solution 〈ε1,1, ε1,2, ε1,3, ε1,4〉 =
〈0,−7/4, 0,−9/8〉, from which we can obtain the adversarial

input 〈1/12, 1/24〉 as already shown above.

METHODOLOGY

We now describe the technical details of our approach

and present our algorithm. We begin with the notation that

we use. Let N denote the DNN5 that we have with n
inputs (i1, i2, . . . , in), m outputs (o1, o2, . . . , om), and k layers

(l1, l2, . . . , lk). We use vp,q to denote the value of the qth

neuron in lp. We assume that N is feed-forward, i.e., the

(weighted) edges connect neurons in adjacent layers only, and

point in the direction of the output layer. We use the term

edge-layer to refer to all the edges between any two adjacent

layers of N , and denote the edge layers as el1, el2, . . . , elk−1.

We also assume the hidden layers (l2, l3, . . . , lk−1) in N have

ReLU activation function, and that there is no activation func-

tion on any output neuron. For simplicity, we assume that the

neurons do not have any biases. This is not a limitation in any

sense; our implementation handles them directly. Moreover,

a DNN with biases can be converted into an equivalent one

without any biases. Like in the previous section, we use δp
to denote the change in the pth input, and εq,s to denote

the change in the weight of the qth edge in els. The δp’s

are constrained to be ≤ δ, which is the biggest perturbation

allowed in any pixel to find an adversarial input.

Algorithm 1 presents a pseudocode of our algorithm. The

inputs to the algorithm are: N , l, δ, and the values for the

input neurons v1,1, v1,2, . . . , v1,n, for which the correspond-

ing output does not satisfy a given adversarial property

φ(o1, o2, . . . , om) (denoted simply as φ, henceforth). The

aim of our algorithm is to find a new set of input values

v′1,1, v
′
1,2, . . . , v

′
1,n such thatN ’s output corresponding to these

new inputs satisfies φ. The algorithm works in the following

two steps. First, it finds a small modification in the weights

of el1 to derive Nmod (which is essentially N with the

modified weights in el1), such that the output of Nmod for

the input v1,1, v1,2, . . . , v1,n satisfies φ. Then, the algorithm

translates this first-layer modification into adversarial inputs

v′1,1, v
′
1,2, . . . , v

′
1,n, subject to the constraint that |v′1,p−v1,p| ≤

δ, for every p ∈ [1, n]. This second step is shown in the

algorithm as the function mod2adv , the pseudocode of which

has been omitted as this is a simple call to Gurobi as illustrated

in the previous section.

Let us assume for the time being that we have a sub-

routine modifyEdgeLayer that takes as input a DNN N ,

one of its edge-layers elk, values of the input neurons

v1,1, v1,2, . . . , v1,n, and a property φ on the output layer

neurons, and returns a new network Nmod with the constraints

that:

5Our approach is not limited to DNNs. It can be easily extended to
CNNs(Convoluted Neural networks) where the modification is found in the
first fully connected layer and then translated back to the input layer. The
convolutional and pooling layers do not limit our methodology.

• Nmod is same as N except for the weights in elk, and

• the output of Nmod on v1,1, v1,2, . . . , v1,n satisfies φ.

Clearly, with such a sub-routine, the first step of

our algorithm becomes trivial. We would simply call

modifyEdgeLayer with the given input, N , φ, and el1. We

refer to the work of [11] which gives us exactly this. However,

we do not use it directly to find our first-layer modification.

Informally, the technique of [11] uses variables εq,s to denote

the changes in the weights (in a given edge-layer s) and

encodes the computation of the entire network, and then adds

the constraint that the output must satisfy φ. It then uses

Marabou [24] on these constraints, to solve for (and optimize)

the values of εq,s. Consider an example (reproduced from [11])

shown in Fig. 3 with the output property φ := (v3,1 ≥ v3,2).
Let us ignore the color of the output neurons for now. If the

input neurons are given values v1,1 = 3 and v1,2 = 4, the

output neurons get the value v3,1 = −2 and v3,2 = 2, which

does not satisfy φ. Note that the hidden layer neurons have

ReLU activation function. In order to obtain a second edge-

layer modification such that φ holds for the input 〈3, 4〉, the

technique of [11] generates the constraints given in Fig. 4.

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

1

-1

2

-2

1

1

-1

-1

Fig. 3: Example illustrating DNN modification, from [11]. Red indi-
cated decrement neuron and green indicates increment neuron.

In a similar way, the constraints can be generated for

modification in any layer, by propagating the input values up

to that layer, encoding the computation from there onward,

and adding the output property φ. If a first-layer modification

has to be found, this gives rise to a big monolithic constraint,

particularly for large-sized networks. This does not scale in

minimize M (12)

M ≥ 0 (13)

−M ≤ ε1,2 ≤M (14)

−M ≤ ε2,2 ≤M (15)

−M ≤ ε3,2 ≤M (16)

−M ≤ ε4,2 ≤M (17)

v3,1 = 0.(1 + ε1,2) + 2.(−1 + ε2,2) (18)

v3,2 = 0.(−1 + ε3,2) + 2.(1 + ε4,2) (19)

v3,1 ≥ v3,2 (20)

Fig. 4: DNN modification constraints for Fig. 3
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practice, and therefore we propose an iterative approach of

doing this in our algorithm. The iterative approach uses the

above technique to find a middle-layer modification, derive

a new output property φ′ for the first half of the network,

and does this repeatedly till a first-layer modification is found.

This has been illustrated in the function findFirstLayerMod
in Alg. 1, which calls modifyEdgeLayer in a loop. The last bit

here is to understand how the modified output property φ′ may

be derived in each iteration. The way this works is as follows.

Let us say that the last call to modifyEdgeLayer was made

on edge-layer el(j−1), which connects the layers l(j−1) and

lj . We can use the modified weights to propagate the inputs

all the way to layer lj , by simply simulating the network on

the inputs. This gives us values for all the neurons in layer

lj , say c1, c2, . . . and so on. Now, the modified weights are

replaced by the original weights, and all the layers after lj are

dropped off from the network. This reduced network N ′ has

exactly the layers l1 to lj of N . We denote this reduction

as N ↓(l1...lj). Ideally, we would want to find a middle-

layer modification in N ′ under the new output constraint as

φ′ := (vj,1 = c1) ∧ (vj,2 = c2) ∧ . . . and so on. The updated

φ′ is correct because we know that φ gets satisfied when these

values are propagated further to the output layer. But, we can

relax the strict equalities of φ′ into inequalities as discussed

in the next subsection.

Algorithm 1 Adversarial Inputs via Network Patching

Input: N , l, δ, φ, and input 〈v1,1, . . . , v1,n〉
Output: Adversarial input 〈v′1,1, . . . , v′1,n〉

findFirstLayerMod(N , l, in, φ):
1: while true do
2: p← �(l/2)

3: Nmod ← modifyEdgeLayer(N , in, φ, elp)
4: return Nmod if(p = 1)
5: 〈c1, c2, . . .〉 ← simulate(Nmod, in)
6: φ′ = (v(p+1),1 = c1) ∧ (v(p+1),2 = c2) ∧ . . .
7: N ′ = N ↓(l1...l(p+1))

8: N ← N ′; l← (p+ 1); φ← φ′

9: end while

main():
1: in ← 〈v1,1, . . . , v1,n〉
2: Nmod ← findFirstLayerMod (N , l, in, φ)

3: 〈δ1, δ2, . . . , δn〉 = mod2adv (Nmod, in, δ)

4: 〈v′1,1, . . . , v′1,n〉 = 〈v1,1, . . . , v1,n〉 + 〈δ1, . . . , δn〉
5: return 〈v′1,1, . . . , v′1,n〉

A. Simplifying DNN Modification Constraints

Let us revisit the example of Fig. 3, and the constraints

corresponding to the modification problem shown in Fig. 4.

Recollect that the modification problem in this example was

to find small changes in the weights of the second edge-layer,

such that v3,1 ≥ v3,2 for the input 〈3, 4〉. This is not true for

the DNN in this example as v3,1 gets the value -2, whereas

v3,2 gets the value 2. A possible way of satisfying v3,1 ≥ v3,2
is to change weights in such a way that v3,2 decreases and

v3,1 increases. This can give us a marking of the final layer

neurons as decrement and increment, which has been indicated

by the neuron colors red and green in Fig. 3. The useful thing

about such a marking is that it can be propagated backward

to other layers. For instance, in the same example, v2,1 and

v2,2 can also be colored green and red, resp. This works

by looking at the edge weights. Since v2,1 is connected to

v3,1 with a positive-weight edge, an increase in v3,1 can be

brought about by increasing v2,1. If we look at v2,2, since

it connected to v3,1 with a negative-weight edge, a decrease
in v2,2 would result in an increase in v3,1. This marking was

proposed by Elboher et al. [25], although it was in the context

of abstraction-refinement of neural networks. We refer the

interested readers to [25] for more details about this marking

scheme. In what follows, we explain how this marking can be

useful in simplifying the modification constraints.

Since we are interested in modifying weights in the second

edge-layer (el2), we propagate the inputs to the second layer of

neurons. This gives us the values 〈0, 2〉 for 〈v2,1, v2,2〉. Having

propagated the input to the source neurons of el2, and the

increment-decrement marking at the target neurons of el2, we

claim that we can identify whether a given edge-weight should

be increased, or decreased. Let us consider the edge between

v2,2, which has a value of 2, and v3,1, which has an increment

marking. We claim that the change in this edge, ε2,2 should

be positive. Naturally, since the value is positive, we should

multiply with a bigger weight to get an increased output.

Instead, if a positive value was connected to a decrement

neuron, we should decrease the weight (for example, for the

edge between v2,2 and v3,2). In case of negative values, just

the opposite needs to be done. And if the value is zero, no

change needs to be made at all. With this, the constraints in

Fig. 4 get simplified as ε1,2 = ε2,2 = 0, 0 ≤ ε3,2 ≤ M
and −M ≤ ε3,2 ≤ 0. We have implemented6 this on top

of the tool corresponding to [11] and used it in our call to

modifyEdgeLayer .

We end this section with a brief note on how this increment

decrement marking may help us relax the modified output

property φ′. Recollect that φ′ was derived as a conjunction

of equality constraints, where each conjunct was equating

a last-layer neuron of the reduced network with the values

obtained by simulating the input on Nmod. Since we know

the increment-decrement marking of last layer neurons, we

can relax each conjunct into an inequality by replacing the

equality sign with ≤ (≥) for decrement (increment) neurons.

This allows us to obtain, possibly better, solutions more often.

6As compared to [11] on their benchmarks, our implementation produces
smaller modifications, and does it an order of magnitude faster on an average.
Refer to section -C for our comparisons with [11].
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EXPERIMENTAL SETUP

We implemented our approach in a tool called AIGENT7

(Adversarial Input Generator), using the Tensorflow and Keras

libraries for working with the DNNs. AIGENT uses Gurobi

for constrained optimization. We ran AIGENT with fully

connected deep neural networks which have 5-10 hidden layers

where each layer has neurons ranging from 10 to 50. The

results we present in Table: I are average results obtained from

all the experiments performed.

B. Benchmark datasets

We conducted our experiments on three popular datasets:

MNIST, CIFAR-10, and ImageNet. We chose these bench-

marks because they are readily available and are acceptable

as inputs by a number of tools, making it easier to compare

different techniques in a fair way. MNIST consists of 60,000

black and white images of handwritten digits for the purpose of

training and 10,000 for testing. Each image is of 28x28 size. It

has 10 classes with labels corresponding to each digit. CIFAR-

10 consists of 60000 32x32 colour images in 10 classes.

ImageNet is a large dataset which consists of images in 1000

classes.

C. Metrics of Evaluation

In addition to the usual metrics like L2 and L-∞ distance,

and the time taken, we have used the following metrics to

compare our results with the results of existing approaches.

1) Defect detection:

Number of images successfully attacked

Total number of images
∗ 100

A low defect detection implies that the method could

generate adversarial images for a limited number of the

original images and hence it is undesirable.

We conducted experiments on a set of 10,000 MNIST

images. AIGENT (high defect) was able to produce

adversarial images for 9140 original images. Thus, the

defect detection rate for this case is 91.4% (2nd row

under MNIST in Table I).

2) Naturalness: It is used to score the adversarial images

for being admissible, i.e. visibly not very different from

the original image. We use Frechet Incéption Distance

(FID) [22] to measure naturalness. Values of FID close

to 0 indicate that the adversarial images are natural, and

are therefore desirable.

3) Output impartiality/Pielou Score [22]: It reflects whether

or not the adversarial image generation is biased towards

any one of the output classes. It can range from 0

(biased) to 1 (unbiased).

Pielou Score =

|Classes|∑

i=1

freq i∑
i freq i

∗ log freq i∑
i freq i

freq i=Frequency of ith class in the adversarial image

set.

7https://github.com/KhanTooba/AIGENT.git

4) Transferability: Reflects whether the adversarial images

produced by any given method are still adversarial for

an adversarially trained model. We measure this by

feeding the generated set of adversarial images to an

adversarially trained DNN and calculate the percentage

of images which are misclassified.

A transferability of 40% for method ‘A’ means that

40% of the adversarial images produced using ‘A’ were

misclassified by the Deep Neural Network which had

been re-trained/hardened against adversarial attacks and

the remaining 60% were classified as their true labels.

[22] have observed that neuron coverage was negatively

correlated with defect detection, naturalness, and output im-

partiality. Naturalness is considered an essential metric while

assessing the quality of adversarial images. Fig. 5 shows how

some of the existing methods generate images that perform

well on L2 and L-∞ distance metric, but are visibly different

from the original image.

Fig. 5: Examples of adversarial images generated by other
techniques lacking originality.

RESULTS

Table I presents a comparison of AIGENT with other state-

of-the-art approaches of generating adversarial images, on all

the three benchmarks datasets, for several important metrics

including FID, Pielou score, defect detection rate, L-2 and L-

∞ distance, and the number of pixels modified. The results

demonstrate that AIGENT performs better than all the other ap-

proaches in terms of FID, which indicates that the adversarial

images generated by our method are natural and visibly quite

similar to the corresponding original images. This is further

reinforced by the fact that AIGENT modifies far fewer pixels

as compared to the other approaches.

Our method could achieve 72% defect detection for MNIST

when constraints were stricter. When we allowed the quality

of generated adversarial images to degrade slightly in order to

achieve a higher defect detection, shown as AIGENT (high

defect) in the table, we were able to generate adversarial

images for 91.4% of the original images. Our method performs

comparable to white box methods. Although FGSM achieves
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S.
No.

Technique FID Pielou
score

L-2 L-∞ Time (s) Pixels modified % of pixels modified Defect detection

Benchmark dataset: MNIST
1 AIGENT 0.001 0.725 1.82 0.66 1.726 24 3.06% 72.00%
2 AIGENT (high defect)1 0.03 0.74 4.1 0.80 1.799 24 3.06% 91.40%
3 FGSM2 1.73 0.95 2.8 0.1 0.069 784 100.00% 99.00%
4 Black Box3 1.98 0.14 6.58 0.23 0.065 784 100.00% 88.40%
5 DeepXplore 0.02 0.47 5.16 1 11.74 60 7.65% 45.66%
6 DLFuzz4 0.17 0.88 2.29 0.39 30 586 74.74% 92.36%
7 AutoAttack5 [26] 0.248 0.836 5.52 0.3 0.2 616 78.57% 98.40%

Benchmark dataset: CIFAR-10
1 AIGENT 0.00009 0.927 1.6 0.5 12.01 12 0.39% 100.0%
2 FGSM2 0.071 0.92 5.5 0.1 0.079 3072 100.00% 100.0%
3 Black Box3 0.44 0.703 13.04 0.23 0.082 3072 100.00% 76.20%
4 AutoAttack5 [26] 0.038 0.97 0.53 0.03137 0.2 588 57.42% 57.6%
5 Output Diversification 0.91 0.85 5.34 0.99 26.66 120 11.72% 100%

Benchmark dataset: ImageNet
1 AIGENT 0.00011 0.75 6.81 0.73 35 300 0.61% 98.60%
2 FGSM2 0.43 0.87 22 0.1 0.4 16384 100.00% 97.00%
3 Black Box3 0.05 0.8 52 0.4 0.3 16384 100.00% 90.00%
4 DeepXplore 0.032 N.A 58.04 0.51 84 15658 95.57% 59.13%
5 DLFuzz4 0.11 N.A 8.1 0.6 57 16102 98.28% 92.00%
6 AutoAttack5 [26] 0.045 0.73 4.68 0.1 0.147 6835 41.72% 42.31%
7 Output Diversification 0.71 0.83 25 0.99 53 1500 97.66% 100%

TABLE I: Comparison of AIGENT with other state-of-the-art techniques on MNIST, CIFAR-10 and ImageNet datasets. Bold values
indicate the best figure for each metric. DeepXplore and DLFuzz did not work on CIFAR-10. 1: Tuned to achieve higher defect detection.
2:Gradient Based technique [4]. We have utilised FGSM with a maximum value of 0.1 for the L-∞ norm. This has been done in order to

get maximal defect detection. 3: [27]. 4: We were getting a few compilation errors in the DLFuzz code
(https://github.com/turned2670/DLFuzz) which we have fixed for this comparison. 5: We have used autoattack with limits of L-∞ norm.

Maximum values of L-∞ norm for MNIST, CIFAR-10, and ImageNet are 0.3, 0.03, and 0.1 respectively. These are the best reported L-∞
values for Autoattack. The values reported for L-2 and L-∞ norms and the number of pixels modified are the maximum values obtained.

The values reported for time taken are average values.

higher defect detection, they modify 100% pixels which

leads to visibly distinguishable images. Thus, our method

performs well in terms of defect detection, while keeping the

modification quite small. Defect detection using AIGENT on

CIFAR-10 was better than all the other approaches, while for

ImageNet, the defect detection was lower than only Output

Diversification, which modified 97.66% pixels as compared to

0.61% in the case of AIGENT.

For measuring the Pielou score, we took 50 original images

of each class and then calculated the frequency distribution on

the classes of adversarial images generated. AIGENT was able

to achieve a good Pielou score on all the benchmark datasets.

While techniques such as FGSM and Autoattack have a better

Pielou score, it comes at the expense of other metrics such as

FID and the percentage of pixels modified. Our method aims

at striking a good balance between these metrics as it is crucial

for the quality of adversarial images.

Fig. 6 shows sample adversarial images produced for

MNIST, CIFAR-10 and ImageNet datasets. The first row

contains original images and the second row contains their

corresponding adversarial images. Fig. 7 shows a comparison

of AIGENT with Autoattack, DeepXplore, FGSM , and black-

box, on the same input image.

Transferability

We generated adversarial images using the strategies listed

in Table I and randomly selected a set of adversarial images

so that images generated by each technique were uniformly

present in the set. Then, we re-trained deep neural network

using the selected set of adversarial images to get a more

robust neural network N’. For each benchmark and method

listed in Table I, we then attacked the network N’ and

Fig. 6: Adversarial images produced by AIGENT (bottom row), and
the corresponding original images (top row).

calculated the transferability score for each case. We noticed

that the transferability score for AIGENT was better than all the

other methods(as shown in Table II. This shows that AIGENT

produces better quality images which are able to fool hardened

DNNs.

Comparisions with Goldberger et al. [11]

Our tool AIGENT implements an improvement over the

modification technique (explained in section 4.1 of the paper)

used in [11]. To quantify the benefits of this improvement,

we have compared our network patching technique with the

technique proposed in [11] using the same setup used in [11].

Table III shows the modifications found using our network

patching technique and the technique mentioned in [11]. We

note that the modifications found using our technique are

invariably smaller than the ones found by [11]. The tool
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AIGENT FGSM BlackBox DLFuzz DeepXplore AutoAttack
MNIST 48% 38% 42% 32% 45% 34%
CIFAR-10 51% 41% 43% 30% 46% 33%
ImageNet 42% 29% 27% 33% 37% 23%

TABLE II: Comparison of Transferability scores for different techniques.

Network 1 Network 2 Network 3 Network 4
Technique Layer n mod n mod n mod n mod

Using AIGENT 0 ∞ ∞ 26 19.3277 7 0.0653 6 0.2092
1 ∞ ∞ ∞ ∞ 231 0.0266 253 0.3156
2 ∞ ∞ 408 3.45949 165 0.0595 143 0.0991
3 ∞ ∞ 336 5.8526 255 0.2676 299 0.16040
4 ∞ ∞ 154 2.0554 187 0.0620 230 0.74573
5 ∞ ∞ 33 0.3085 66 0.00092 50 0.00587
6 5 0.03364 15 0.0383 30 0.00017 15 0.00070
7 1 0.03488 4 0.04002 3 0.00019 5 0.00070

Using Goldberber et al 7 7 3.1 5 0.08 2 0.003 2 0.004

TABLE III: Comparison of modifications found by AIGENT and [11] in different layers of the given neural networks. [n=number of
weights modified; mod=Total modification in the n weights; ∞=Infeasible]. Networks 1-4 are ACASXu Networks. The values in bold (and

blue) indicate the least modifications.

Fig. 7: Sample adversarial images from different tools.

given by [11] finds modifications only in the last layer of

the network (the technique, however, does not have this

limitation). AIGENT not only finds smaller modifications but

it is also faster. The time taken by AIGENT to find last layer

modifications was only 3 seconds, while [11] took 30 seconds

to find modifications for the same objective function.

Overcoming a Methodological Limitation: Proposed Approach
and Empirical Findings

It is noteworthy that in Algorithm 1, while finding modifica-

tions in a particular layer, we assign each neuron to a particular

phase. For this, we first generate the value of every neuron for

the given input and use that to assign a phase to the neurons.

For example, if for input i the 1st neuron in Layer 2 had a

positive value, we would fix the phase of that neuron to active
(i.e., x ≥ 0, and thus ReLU(x) = x), or else we will fix the

phase to inactive (i.e., x < 0, and thus ReLU(x) = 0). In our

algorithm, active phase neurons are only allowed to increase

and inactive phase neurons are only allowed to decrease.

While our technique works well in practice and finds an

adversarial example in every case, it may fail in doing so

if the assigned phases do not contain an adversarial example.

Even when we find an adversarial example, it may happen that

a different phase-combination leads to a “better” adversarial

example. Checking all phase-combinations, however, will lead

to an exponential number of calls to AIGENT. To overcome

this, we used linear approximations for all the neurons in

the network instead of fixing their phases. We first calculated

linear approximations for all activation functions in the net-

work using the technique mentioned in [28]. We calculated

approximations for a particular class, which means that for a

set of K classes, we generated K sets of linear approximations.

Thus, for a total of R number of ReLU neurons in the network

and K classes, we will have K ∗ R linear approximations.

Since these approximations are calculated for the entire dataset

as a pre-processing step, adversarial examples can be gen-

erated faster. We observed that using linear approximations

with AIGENT decreased the average time taken8 to generate

adversarial images without compromising on the quality (FID,

L-2, and L-∞ norm) of the images generated. The times

decreased from 1.7, 12.01, and 35 seconds to 1.5, 10.3, and 31

seconds for MNIST, CIFAR-10, and ImageNet, respectively.

CONCLUSION

Finding adversarial inputs for DNNs is not just useful for

identifying situations when a network may behave unexpect-

edly, but also for adversarial training, which can make the

network robust. We have proposed a technique to generate

adversarial inputs via patching of neural networks. In our

experiments over three benchmark image datasets, we ob-

served that the proposed method is significantly more effective

than the existing state-of-the-art – it could generate natural

adversarial images (FID scores ≤ 10−3) by perturbing a tiny

fraction of pixels (≈ 3% in the worst case).

There are several interesting directions for future work.

Since the proposed method works by finding a patch repeat-

edly, better algorithms for DNN patching would also make our

technique more efficient. Another useful direction would be

to find a minimal patch in order to get the closest adversarial

8The average time taken includes the time taken to compute the approxi-
mations.
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example. And even though the technique can, in principle,

be applied to DNNs with any activation function, it would

be worthwhile to engineer our approach to handle activations

other than ReLU efficiently.
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