
Efficiently Learning Safety Proofs
from Appearance as well as Behaviours

Sumanth Prabhu(B), Kumar Madhukar, and R. Venkatesh

TCS Research, Pune, India
sumanth.prabhu@tcs.com

Abstract. Proving safety of programs relies principally on discovering
invariants that are inductive and adequate. Obtaining such invariants,
therefore, has been studied widely from diverse perspectives, including
even mining them from the input program’s source in a guess-and-check
manner [13]. However, guessing candidates based on syntactical construc-
tions of the source code has its limitations. For one, a required invariant
may not manifest on the syntactic surface of the program. Secondly, a
poor guess may give rise to a series of expensive checks. Furthermore,
unlike conjunctions, refining disjunctive invariant candidates is unobvi-
ous and may frequently cause the proof search to diverge. This paper
attempts to overcome these limitations, by learning from both – appear-
ance and behaviours of a program. We present an algorithm that (i)
infers useful invariants by observing a program’s syntactic source as well
as its semantics, and (ii) looks for conditional invariants, in the form of
implications, that are guided by counterexamples to inductiveness. Our
experiments demonstrate its benefits on several benchmarks taken from
SV-COMP and the literature.

1 Introduction

Arguing for program correctness is a challenging task. But it is non-optional,
especially as software has permeated our lives, in forms that are many times even
safety- or business-critical. Not surprisingly, this subject has been the focus of a
lot of research in the last several decades, and there is a vast amount of literature
covering different facets of this problem. The issue that is central to all of this
is that of discovering inductive invariants, that are sufficient to discharge the
property in question. Invariants help in over-approximating the reachable states,
which can then be shown to be disjoint with the set of bad states to establish
safety, whereas precisely computing what is reachable may be infeasible.

Numerous techniques have been proposed for inferring program invariants
automatically, and even semi-automatically with human assistance. Broadly
speaking, these techniques learn meaningful information about the input pro-
gram from its semantics, using approaches based on abstract interpretation [5–7],
constraint solving [4,16], counterexample-guided abstraction refinement [3],
property directed reachability [2,17], interpolation [1,8], user-assistance [19], etc.
In contrast, Fedyukovich et al. [13] recently demonstrated that invariants can
c© Springer Nature Switzerland AG 2018
A. Podelski (Ed.): SAS 2018, LNCS 11002, pp. 326–343, 2018.
https://doi.org/10.1007/978-3-319-99725-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99725-4_20&domain=pdf

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 327

int n;

assume(1 <= n <= 1000);

int sum = 0, i = 1;

while(i<=n) {

sum = sum + i;

i = i + 1;

}

assert(2*sum == n*(n+1));

(a)

int LRG = nondet();

assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {

if (x < LRG) {

y = y;

} else {

y = y + 1;

}

x = x + 1;

}

assert(y == 2*LRG);

(b)

Fig. 1. Motivating examples

often be caught on the surface, i.e. the invariants many times imitate the syntac-
tical constructions appearing in the source code. Their tool, FreqHorn, works
in a guess-and-check manner, by sampling candidates from an appearance-guided
search space built automatically from ingredients found in the program source.
A follow-up work [12], and the corresponding tool FreqHorn-2, accelerates
this process by computing additional candidates as interpolants from proofs of
bounded safety. These candidates likely reflect the nature of the error unreach-
ability, and thus have a semantic value. While this justifies the idea of supple-
menting syntactic search with behavioural1 facts about the program, interpolants
obtained from bounded proofs may not fully capture these facts. Nevertheless,
an important contribution of this technique is the automatic construction of
sampling space, which is particular to the input program. This can even assist
template-based methods, e.g. Daikon [11], in selecting the templates carefully,
instead of working with a generic one that may be needlessly more expressive.

Consider the example shown in Fig. 1a. It computes the sum of first n natural
numbers, and asserts that twice the computed sum equals n times (n+1). Since
this is an arithmetic fact, the program is safe. The sum is computed by iterating
over the numbers from 1 to n in a loop, and by adding each number to the
variable sum, which is 0 initially. One way to prove this program correct is to
obtain the following inductive invariants for the while loop: 2∗ sum = (i− 1) ∗ i,
and i ≤ (n + 1). Along with the exit condition of the loop, (i > n), these are
sufficient to derive that 2 ∗ sum = n ∗ (n + 1).

1 behaviour refers to facts derivable from the program’s meaning, not necessarily lim-
ited to its concrete runs; we use the terms behaviours and semantics interchangeably.

328 S. Prabhu et al.

A merely syntactic exploration would find the invariant i ≤ (n + 1) (it is a
mutation of the loop condition), but it would fail2 to deduce that 2 ∗ sum =
(i − 1) ∗ i is a loop invariant. While the latter is quite similar to an expression
appearing in the program, namely the property, FreqHorn-2 does not consider
mutations that alter variables. And even if it did, that would result in a number of
mutants which are poor candidates. I.e. they would fail the inductiveness check,
which is an expensive operation in this case because of the non-linear template.
On the other hand, if we look to obtain algebraic invariants behaviourally, e.g.
as proposed by Sharma et al. [24], we can get that inductive invariant almost
immediately.

It is noteworthy that an execution-based approach, similar to the one stated
above, would be able to verify this example even when n is replaced by a concrete
value, say 239, and the property becomes 2∗sum = 57360. The desired invariant,
2 ∗ sum = (i − 1) ∗ i, is no longer available as a mutation of the property.
But it is still a valid algebraic relation between sum, i and i2, that can easily
be drawn from program executions. In other words, information available from
concrete runs complements the syntactic search for invariants, especially when
the property does not entirely manifest at the program surface, but also lies
deeper in its behaviours.

For another limitation of the existing technique, let us consider the program
shown in Fig. 1b, chosen from the benchmarks used in [12]. The program has a
positive constant LRG, denoting a large value perhaps, and two variables, x and y.
The while loop in the program has two distinct phases – first in which only x gets
incremented, till it becomes LRG (and equal to y’s initial value), and the second
where both x and y are incremented as long as x is less than twice the large
constant. The assertion holds because x and y are equal after every iteration in
the second phase. A formal proof of correctness can be derived from the following
inductive invariants: (((x <LRG) ⇒ (y =LRG)) ∧ ((x ≥LRG) ⇒ (y = x))), and
(x ≤ 2∗LRG).

FreqHorn-2 rarely converges to a proof for this program (only once in
20 runs in our experiments, with a timeout of 600 s); the reason being lack of
structured search, particularly for disjunctive invariant candidates. For example,
in order to get ((x ≥LRG)∨(y =LRG)), FreqHorn-2 has to choose the candidate’s
arity as 2, and then sample the parts (x ≥LRG) and (y =LRG) separately. If any
of the choices turn out to be bad, the inductiveness check fails, and a subsequent
refinement may even replace disjuncts that are useful or necessary. Analyzing
behaviours may not work for such programs either. There must be enough runs
representing all the phases in order to deduce the algebraic relations, even if
they exist.

We propose a method to solve this problem by extracting conditional invari-
ants, which are implications with antecedents that are derived from conditions
appearing in the program. Whether a conditional invariant needs to be sampled
or not is decided by inspecting the counterexamples to inductiveness, or CTIs,
of the candidates explored thus far. We check if the counterexamples can be

2 FreqHorn-2 times out after 600 s, in an experimental set-up similar to [12,13].

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 329

made to fit into a polynomial over program variables, to determine if they are
of the same kind. Intuitively, if there are different kinds of counterexamples, it
may be worthwhile to look for an invariant for each kind. I.e. implications of the
form condi ⇒ invi, where condi qualifies the kind of CTIs, and invi denotes the
invariant that gets rid of those.

Given the invariants that are needed to prove safety of the example in Fig. 1b,
it is evident that this enhancement allows us to get them quickly. Note that the
restriction to sample the antecedents from a very small space (of conditions
appearing in the program, and their mutations) prevents us from divergence in
many cases. However, at the same time, it is expressive enough to work in a
number of cases. In particular, it enables our approach to solve examples with
multi-phase loops that require phase-specific invariants [23].

The core contributions of this paper are summarized as follows:

– A technique that combines learning from a program’s behaviours, with that
from its syntactic source, for inferring useful invariants.

– A heuristic to determine whether conditional invariants could be useful, and a
method to obtain them by analyzing implications whose antecedents are cho-
sen to be (possibly, conjunctions and/or mutations of) conditions appearing
in the program, or negations thereof.

– An implementation that extends FreqHorn-23 – the tool used for evaluation
in [12], which forms the basis of this work.

– Experimental evaluation that illustrates the usefulness of our approach on
several benchmarks from SV-COMP and the literature.

Outline of the Paper. We start with a survey of the related work in the next
section (Sect. 2), before moving over to some of the closely related ones in details,
seeing that they serve as the necessary background (Sect. 3). Section 4 describes
the core contributions of this work, and is followed by a discussion of the experi-
mental results (Sect. 5). Section 6 concludes the paper, and includes our thoughts
on several interesting directions of pursuing this further.

2 Related Work

Invariant synthesis is an essential step in program verification. Abstract interpre-
tation [5,6] is a prominent technique which iteratively computes approximations
until a fix point is reached. The assertion generated at fix point is an induc-
tive invariant. In order to overcome the difficulty of choosing widening heuristics
in abstract interpretation, template-based techniques were proposed. For exam-
ple, [4] assumes the invariants to be in a fixed template over program variables.
Inductiveness conditions are translated to nonlinear constraints such that the
solutions of constraints are invariants. However, this technique relies on the effi-
ciency of nonlinear constraint solving.
3 Thanks to Grigory Fedyukovich, the sources of FreqHorn-2 are available at https://

github.com/grigoryfedyukovich/aeval/tree/rnd.

https://github.com/grigoryfedyukovich/aeval/tree/rnd
https://github.com/grigoryfedyukovich/aeval/tree/rnd

330 S. Prabhu et al.

A somewhat related technique for invariant discovery is that of guess-and-
check, which repeatedly guesses candidate invariants from a known language rep-
resented by a grammar, and checks them for invariance. Automatic construction
of an adequate grammar, tractable search among candidates, and inductiveness
check of candidates are the main challenges of this technique. In general, an SMT
solver that can decide the underlying theory is used for the inductiveness check.
The other two challenges are addressed using data computed through static and
dynamic analysis techniques. For instance, the technique presented in [24] uses
concrete program runs as data to discover invariants. Invariants are assumed to
have the form of a fixed-degree polynomial equation over program variables. The
execution traces are used to solve for coefficients of the polynomial. It uses an
SMT solver to check inductiveness of the solutions. A similar dynamic analysis
technique to discover polynomial and array invariants has been proposed in [18].
The drawbacks of these techniques are high computational complexity for dis-
covering invariants with inequality [18], and inability to derive disjunctions that
are not polynomial equations.

Counterexamples to consecution, along with the information available on
unreachable and reachable states (referred to as ICE), are used for guiding the
search for invariant candidates in [15]. An invariant is assumed to be boolean
combinations of atomic formulas of a particular form, e.g. an octagon. The prob-
lem of guessing a candidate is modeled as problem of generating a formula that
separates reachable and unreachable states. Techniques from learning theory are
used on the available data to solve this problem.

In [22], the invariant candidates are sampled as boolean combinations of
linear inequalities, whose coefficients and constants are taken from a data set
that is populated from constants occurring in the source code, and their sums
and differences. It also incorporates those counterexamples in the data that
disqualify a candidate as an invariant. The entire program source may also be
considered as data, e.g. [13]. A frequency distribution obtained from the input
program’s source guides the automatic construction of grammar. Moreover, failed
candidates are used to prune the search space of candidates. This technique was
found to be competitive to other machine-learning techniques. However, pruning
can cause divergence in the algorithm. This problem is partially addressed in [12],
which performs consecution checks in batches, and uses the counterexamples to
induction effectively. It also supplements the method with candidates of semantic
values, obtained as interpolants from bounded proofs. Our work further enhances
this by mining candidates from program behaviours, and enabling discovery of
conditional invariants.

3 Notations and Background

We begin with a description of the notations that are used in Fedyukovich
et al. [12,13], which we also follow.

Definition 1. A program P is defined as a transition system, or a tuple 〈V ∪
V ′, Init ,Tr〉, where

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 331

– V denotes the set of variables, and the corresponding primed set V ′ represents
their next-state copies,

– Init is a set of initial states encoded as a formula over V , and
– Tr(V, V ′) is a transition relation encoded as a formula over V and V ′.

We assume that the formulas belong to a fixed first order language L. A
state is an assignment of values to all variables in V or V ′. For a formula φ over
V , a state s satisfies it, s |= φ, when the assignment of values to all variables
as per s satisfies the formula φ. A state sk is reachable if either sk |= Init or
∃sk−1, (sk−1, s

′
k) |= Tr , where sk−1 is a reachable state and s′

k assigns same
values as V for corresponding primed set V ′.

Given 〈P,Bad〉, where Bad is an undesirable set of states encoded as a for-
mula over V , verification of P is the task of deciding whether a state from Bad
is reachable or not. An L-formula Inv which is disjoint from Bad and includes
all the reachable states is called a safe inductive invariant, or henceforth simply
an invariant. If we assume that an invariant exists in L, then verification of P
reduces to finding an invariant Inv , such that the following hold:

Init(V) ⇒ Inv(V) initiation
Inv(V) ∧ Tr(V, V ′) ⇒ Inv(V ′) consecution

Inv(V) ∧ Bad(V) ⇒ ⊥ safety

Note that ⊥ denotes false. These validity checks can be transformed into
equivalent unsatisfiability checks, to be discharged by an SMT solver e.g. Z3 [9].
The models corresponding to the consecution check failure are referred to as
CTIs. More formally, CTIs is a set of pair of states (sk, s′

k+1), such that sk |= Inv
and (sk, s′

k+1) |= Tr , but s′
k+1 |= Inv ′.

We also recall a few basic definitions from linear algebra that we use.
Given a vector space V, over a field F with its additive identity denoted as

0, its basis B = {v1, . . . ,vn} is a minimal subset of V satisfying:

1. ∀ a1, . . . , an ∈ F, if a1v1 + · · · + anvn = 0, then a1 = 0, . . . , an = 0.
2. ∀ v ∈ V,∃ a1, . . . , an ∈ F such that v = a1v1 + · · · + anvn.

The cardinality of B is called dimension of V. For a matrix A, the dimension
of the vector space generated by its columns is called its rank. The nullspace of a
matrix A is a set of all vectors v such that Av = 0. The dimension of a matrix’s
nullspace is also called its nullity.

3.1 Syntax-Guided Invariant Synthesis

An important contribution of [13] is the automatic generation of production rules
for the sampling grammar G, guided by the structure of encoding of Init , Tr and
Bad . Candidate invariants are guessed using these production rules, and then
checked for invariance and safety using an SMT solver. The candidates sampled
from G are disjunctions of linear inequalities. The final invariant is assumed to be

332 S. Prabhu et al.

Algorithm 1. FreqHorn: Syntax-guided invariant generation
Input: Init , Tr , Bad and V
Output: lemmas

1: P ← computeDistribution(Init ,Tr ,Bad)
2: G ← constructGrammar(P)
3: L ← ∅ � the set of lemmas
4: while

∧

l∈L

l ∧ Bad(V) is SAT do

5: init ← false, consec ← false
6: cand ← newCandidate(G)
7: if Init(V) ∧ ¬cand(V) is UNSAT then init ← true

8: if cand(V)
∧

l∈L

l(V) ∧ Tr(V, V ′) ∧ ¬cand(V ′) is UNSAT then consec ← true

9: if init ∧ consec then L ← L ∪ cand
10: adjust(cand, G, P)

11: return L

a conjunction of these candidates, also called lemmas. I.e. Inv ⇔ l0∧ l1∧· · ·∧ ln,
where the lemmas li ∈ G.

A high level description of their technique is presented in Algorithm 1. The
procedure computeDistribution computes a frequency distribution of arities
of operations, program variables and constants used, from the Init , Tr and Bad .
This distribution is used to construct production rules for the sampling grammar
resulting in an initial grammar G in the second step. After this step the algorithm
enters a loop where candidate lemmas, as per the grammar G, are guessed and
checked until a safe invariant is found. The SAT checks in lines 4, 7, and 8 are,
respectively, the checks for safety, initiation, and consecution. If a candidate fails
one of the last two checks, the grammar G is adjusted so that syntactically similar
candidates are not sampled immediately. Otherwise the candidate is added to
the set of lemmas.

3.2 Bootstrapping and Batch Checking

The tool FreqHorn that implements Algorithm 1 outperforms other data-
based tools. However, in a follow-up paper [12], Fedyukovich et al. mitigate two
downsides of this technique, namely (i) the candidates being ignorant to the
program semantics, and (ii) a useful candidate failing the inductiveness check,
even though it is inductive relative to some other candidates that may get sam-
pled in due course. They propose an improved algorithm (shown as Algorithm 2)
that works in two phases: bootstrapping and sampling. During bootstrapping
they add additional candidates obtained as interpolants, from proofs of bounded
safety, as seeds (line 1). This adds semantically valuable candidates, unlike its
predecessor where candidate sampling was purely syntactic. The seeds them-
selves may be safe invariants, or they may assist in constructing safe invariants
in the sampling phase. The sampling phase works in a similar manner as before,
except that the consecution check is done for a batch of candidates at once,

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 333

instead of a single candidate (line 12). This is to address the latter issue, i.e. to
avoid rejecting candidates that are relatively inductive to other lemmas. This
check is similar to the algorithm used in Houdini tool [14].

Algorithm 2. FreqHorn-2: Bootstrapping and Batch Checking
Input: Init , Tr , Bad and V
Output: lemmas

1: candidates ← bootstrapInterpolants(Init ,Tr ,Bad)
2: P ← computeDistribution(Init ,Tr ,Bad)
3: G ← constructGrammar(P)
4: L ← ∅
5: while

∧

l∈L

l ∧ Bad(V) is SAT do

6: while |candidates| < BatchSize do � for a pre-decided BatchSize
7: cand ← newCandidate(G)
8: if Init(V) ∧ ¬cand(V) is UNSAT then
9: candidates ← candidates ∪ {cand}

10: else adjust(cand, G, P)

11: for cand ∈ candidates do
12: if

∧

c∈candidates

c ∧ ∧

l∈L

l ∧ Tr(V, V ′) ∧ ¬cand(V ′) is SAT then

13: candidates ← candidates \ {cand}
14: adjust(cand, G, P)
15: candidates.reset � start the loop afresh

16: for cand ∈ candidates do
17: L ← L ∪ {cand}
18: return L

4 Combining Syntax and Behaviours

The semantic information added by interpolants in the bootstrapping phase
of [12] certainly accelerates the task. However, we have seen that interpolants
from bounded proofs may fail to capture certain behavioural facts. Making the
sampling grammar richer is one solution, but without any guidance irrelevant
candidates will become a bottleneck during the checking phase. We propose an
enhancement to the semantic guidance – from candidates that are not available
on surface, but can be discovered by analyzing behaviours. We also show how
CTIs may be used to detect the need for conditional invariants and how this can
be useful for a certain class of programs.

4.1 Behaviours

Recall the example in Fig. 1a, which needed, along with the inequality (i ≤ n+1),
an algebraic invariant (2 ∗ sum = i2 − i) which was not available from syntax.

334 S. Prabhu et al.

We aim to discover lemmas such as these, by sampling candidates that have the
following fixed degree polynomial equation form:

c1 ∗ m1 + c2 ∗ m2 + · · · + cn ∗ mn = 0

where mi = xk1
1 . . . xkl

l are monomials and ci ∈ Q are coefficients. The degree
of a monomial is the sum

∑
i ki, and the degree of a polynomial equation is

the highest degree among its monomials. In our technique, we consider that
xi’s come from the set of variables V . For instance, 2 ∗ sum − i2 + i = 0 is
a polynomial equation of degree 2 for the program in the variables sum and
i, with the monomials sum, i2 and i. One may sample such candidate lemmas
by guessing the monomials and their coefficients. However, the probability of
obtaining a poor candidate is very high, resulting in a number of expensive
checks. Instead, we rely on the following theorem from [24] to discover them.

Theorem 1. If an invariant is a conjunction of k polynomial equations each of
degree d and nullity of A is k, where A is a data matrix, then any basis for
nullspace of A forms an invariant.

A data matrix is a matrix of values of monomials up to degree d. Each row of
the data matrix corresponds to values of monomials computed by using concrete
values of corresponding variables from V . The concrete values of variables are
obtained from behaviours. For example, Table 1 shows a data matrix computed
with d = 2 for the program in Fig. 1a. The first three columns shows the values
of variables i, n and sum at loop head for five iterations of the loop. The value
of n is a non-deterministic assignment as it is not initialized in the program.

Table 1. Monomials up to degree 2 for the program in Fig. 1a

i n sum i2 i ∗ n i ∗ sum n2 n ∗ sum sum2 const

1 36 0 1 36 0 1296 0 0 1

2 36 1 4 72 2 1296 36 1 1

3 36 3 9 108 9 1296 108 9 1

4 36 6 16 144 24 1296 216 36 1

5 36 10 25 180 50 1296 360 100 1

The central idea of Theorem 1 is that if invariants are assumed to be poly-
nomial equations of degree d over V , then one can obtain coefficients of these
equations using the data matrix. This is because the values from data matrix,
when substituted for monomials, gives us a system of linear equations in c1 . . . cn.
The solutions to these equations form a vector space, and the basis of this vector
space gives coefficients of polynomial equations. The basis of a system of linear
equations can be computed by the well-known Gauss-Jordan elimination algo-
rithm. The computational complexity of this algorithm is O(m2n) for an m × n
matrix.

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 335

Algorithm 3. getAlgebraicCandidates: Learning algebraic invariants from
behaviours
1: procedure getAlgebraicCandidates(behaviours)
2: candidates ← ∅
3: M ← computeMonomials(behaviours, dpoly)
4: B ← GaussJordan(M)
5: for coefficients ∈ B do
6: candidates ← candidates ∪ ConstructPolynomial(coefficients, dpoly)

7: return candidates

Algorithm 3 presents the procedure getAlgebraicCandidates, which
takes behaviours as input, provided either by user or computed using an SMT
solver, and returns a set of candidates. It starts with computing the val-
ues of all monomials up to pre-decided degree dpoly using behaviours, and
stores them in a data matrix M . The basis of nullspace of this data matrix
B is computed using Gauss-Jordan algorithm in the next step. Each vector
of the basis is used as coefficients c1 . . . cn to construct a polynomial equa-
tion following Theorem 1. Thus computed polynomial equations are returned
as candidates. For instance, if we use the values from Table 1 we get basis
B = {(0 1 0 0 0 0 0 0 0 −36

)
,

(−1 0 −2 1 0 0 0 0 0 0
)
,

(−36 0 0 0 1 0 0 0 0 0
)
,(

0 0 0 0 0 0 1 0 0 −1296
)
,

(
0 0 −36 0 0 0 0 1 0 0

)}. When they are substituted
as coefficients we get the following polynomials as candidates: n − 36 = 0,
−i−2∗sum+i2 = 0, −36∗i+i∗n = 0, n∗n−1296 = 0 and −36∗sum+sum∗n = 0.
Among these candidates −i − 2 ∗ sum + i2 = 0 passes both initiation and con-
secution checks.

4.2 Counterexamples to Induction (CTIs)

In this subsection we present a heuristic to solve programs like Fig. 1b. We
observe that invariants of such programs may have different lemmas that hold in
different blocks of the loop, i.e. the lemmas may only be conditional. Hence, the
technique presented in previous section will not be able to generate necessary
invariants. To address this, we first need to check whether a given program
requires conditional invariants. A naive solution is to traverse the transition
relation Tr and look for if conditions in loops. However, this will not work
always and may even miss simple invariants. Consider the program shown in
Fig. 2 which is taken from the benchmarks of FreqHorn-2. Even though this
program has an if condition, a simple assertion i+j = n itself is a safe invariant.
This invariant can be discovered from the technique mentioned in Sect. 4.1.

We call Tr , a polynomial relation if it is possible to represent all variables
from V ′ in a fixed degree polynomial equation over V . This polynomial is of the
form:

f(x′
i) = c1 ∗ m1 + c2 ∗ m2 + · · · + cn ∗ mn

where x′
i ∈ V ′, mi are all possible monomials over V up to a certain degree d

and ci ∈ Q are coefficients.

336 S. Prabhu et al.

main() {

int i=0,j=0,k=100,n=0,b;

assume(b == 0 || b == 1);

while(n < 2*k) {

if (b == 0) {

i++; b = 1;

} else {

j++; b = 0;

}

n++;

}

assert(i+j == n);

}

Fig. 2. A benchmark program from [12]

Our idea is that if Tr is not a polynomial relation then the loop requires
conditional invariants. For example, consider the program in Fig. 1b. Both x′

and y′ are getting modified by two relations: y′ = y, x′ = x + 1, LRG′ = LRG
and y′ = y + 1, x′ = x + 1, LRG′ = LRG, which are from if and else blocks
respectively. It is not possible to find a polynomial function for y′. Hence, we
need an implication. Whereas if we consider the example from Fig. 2, all the
variables in V ′ can be represented by the following polynomial equations over
V : n′ = n + 1, b′ = 1 − b, i′ = i + 1 − b and j′ = j + b. Hence, this program does
not require conditional invariant.

One approach to check if Tr is a polynomial relation is to encode a con-
straint whose satisfiability implies that V ′ can be represented by V . However,
this approach will not scale with larger degrees and variables. We propose an
efficient technique by using concepts of linear algebra and CTIs. Recall that the
models corresponding to the consecution check failure are referred to as CTIs.
In a nutshell, we try to look for coefficients c1 . . . cn that are consistent with
CTIs. We substitute values for f(x′

i) and mi in polynomial equations by using
values of V ′ and V respectively from CTIs. If there are l CTIs this results in
l linear equations over c1 . . . cn. These equations can be represented in matrix
form as Mc = fx′

i
, where M is the matrix of values for mi, cT =

(
c1 . . . cn

)
and

fx′
i

T =
(
x′
i1

. . . x′
il

)
. The following standard theorem from linear algebra [21]

helps to determine if these equations have a solution for the ci’s or not.

Theorem 2. A system of linear equations is consistent if and only if the rank
of the matrix of the system is equal to the rank of its augmented matrix.

In our case the matrix of the system is M and the augmented matrix is M|fx′
i
,

i.e. M augmented with fx′
i
. As per Theorem 2 if rank(M) and rank((M|fx′

i
))

are not equal then it is not possible to have a solution for ci.
The procedure checkForImpl is presented in Algorithm 4. It takes the

CTIs as input. In the first step, it computes M using CTIs up to degree dpoly . It
then checks for each variable x′

i in V ′ whether the rank of its augmented matrix

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 337

Algorithm 4. checkForImpl: Deciding the need for implications from CTIs
1: procedure checkForImpl(CTIs)
2: M ← computeMonomials(CTIs, dpoly)
3: for x′

i ∈ V ′ do
4: fx′

i
← CTIs[xi

′]
5: Maug ← augment(M, fx′

i
)

6: if rank(M) �= rank(Maug) then
7: return true

is equal to rank of the matrix M . If this is not the case for any of the variables,
the procedure returns with the decision that implications will be sampled as
candidates. The complexity of computing the rank of a m×n matrix is O(m2n).

We get the candidates for implication by sampling antecedents and conse-
quents from different sampling grammar. The sampling grammar for antecedent
is constructed by considering only conditions of if statements in Tr . This con-
sideration ensures that candidates for antecedents are sampled from the syntax
that is causing implications. For consequent, the Init , Tr and Bad is considered,
like in the FreqHorn algorithm.

A class of programs that this technique can successfully address is the one
with multi-phase loops, as mentioned in [23]. Splitter-predicates are used to iden-
tify the different phases of the loop, based on when these predicates, or their
negations hold. A loop may start its iteration in one of the phases and then
move to new phases as it progresses. Owing to these, such programs require dis-
junctive invariants. The solution presented in [23] is to compute invariants for
each phase separately. The splitter-predicates are either conditions of if state-
ments, or their weakest preconditions w.r.t. statements in the loop. Similarly,
we derive antecedents from a grammar constructed using the encoding of con-
ditions. In principle, this enables our technique to work for programs where
splitter-predicates helps in discovering disjunctive invariants; in fact, even in
cases when the phases are not syntactically evident.

4.3 Combining Behaviours and CTIs

Algorithm 5 shows the complete algorithm, which combines the techniques illus-
trated above. We skip the description of steps that are already explained in
Sects. 3.1 and 3.2. The algorithm begins by generating behaviours using an SMT
solver, if they are not provided as input. This is done by unwinding Tr to
a certain bound and then computing models for V at each unwinding. These
behaviours are used to compute algebraic candidate lemmas as described ear-
lier. The next two steps create a frequency distribution P using Init , Tr and
Bad , and a grammar G using P. The grammar G is used to get candidates when
algebraic lemmas are not found, or are insufficient to prove the property. We
create a new frequency distribution Pa based on conditions in loop body and its
negations, and a grammar Ga using Pa. These are used to sample antecedents,
if required.

338 S. Prabhu et al.

Algorithm 5. ELABor: Learning from Behaviours and CTIs
Input: Init , Tr , Bad and V
Output: lemmas

1: behaviours ← execute(Init ,Tr ,Bad)
2: candidates ← getAlgebraicCandidates(behaviours)
3: P ← computeDistribution(Init ,Tr ,Bad)
4: G ← constructGrammar(P)
5: Pa ← computeDistribution(Trconds)
6: Ga ← constructGrammar(Pa)
7: L ← ∅ � the set of lemmas
8: disjunct ← false
9: while

∧

l∈L

l(V) ∧ Bad(V) is SAT do

10: if ¬disjunct then disjunct ← checkForImpl(CTIs)
11: if disjunct then antecedent ← newCandidate(Ga)
12: while |candidates| < BatchSize do � for a pre-decided BatchSize
13: cand ← newCandidate(G)
14: if init ← Init(V) ∧ ¬cand(V) is UNSAT then
15: if disjunct then candidates ← candidates ∪ {antecedent ⇒ cand}
16: else candidates ← candidates ∪ {cand}
17: else adjust(cand, G, P)

18: for cand ∈ candidates do
19: if

∧

c∈candidates

c(V)
∧

l∈L

l(V) ∧ Tr(V, V ′) ∧ ¬cand(V ′) is SAT then

20: candidates ← candidates \ {cand}
21: adjust(cand, G, P)
22: CTIs ← CTIs ∪ {getModel(V)} ∪ {getModel(V ′)}
23: candidates.reset � start the loop afresh

24: if disjunct ∧ |candidates| > 0 then adjust(antecedent, Ga, Pa)

25: for cand ∈ candidates do L ← L ∪ {cand}
26: return L

The algorithm proceeds to sample and check candidates in a loop, simi-
lar to FreqHorn-2. This loop is modified to check if sampling implications is
necessary. In the beginning of each iteration, the procedure checkForImpl is
called. If it suggests that an implication is needed then we get them by sampling
antecedents from Ga, and consequents from G. This is followed by a check for
inductiveness and safety. If the consecution check fails, we store the correspond-
ing models (CTIs) in a matrix. This check is unmodified from FreqHorn-2. The
grammar Ga is adjusted when the inductiveness check passes for candidates with
existing antecedents, to ensure different antecedents for new candidates. In our
experiments, we unwound the transition relation up to bound of 10 for getting
the behaviours. We also put a threshold on the number of CTIs collected before
checking the need for implications, and bounded the degree of polynomials to 2.

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 339

5 Experiments

The aim of our experiments was to evaluate the effectiveness of our ideas. In
particular, we were looking to answer the following questions:

1. Does the proposed strategy, of adding behaviours and implications, help
improve the performance of FreqHorn-2 - (a) w.r.t. the number of bench-
marks solved, and (b) w.r.t. the average time taken to solve a benchmark?

2. Does our CTI-based heuristic hamper the tool’s performance in cases when
a conditional invariant may not necessarily be required?

Implementation and Set-Up. We have implemented our ideas as an extension
of FreqHorn-2. We have named it as ELABor, which stands for Efficiently
Learning from Appearance and Behaviour. Like its predecessors, the input pro-
gram and the property are assumed to be in the form of linear constrained Horn
clauses. Additionally, loop head states observed from behaviours may be pro-
vided as input. If that is missing, ELABor automatically generates behavioural
data by unrolling the input program to a certain bound and evaluating models
for program variables at loop head using Z3. Candidate lemmas are computed
from loop head states using the Gauss-Jordan algorithm. For matrix operations,
we use Armadillo [20], a C++ library for linear algebra.

Table 2. Comparison on programs for which FreqHorn-2 timed out in more than
half of the runs; the values show the mean execution time taken (in seconds)

Program FreqHorn-2 ELABor Reason

exact iters 5 ∞ 0.7 B

s mutants 22 ∞ 24.6 B

s mutants 21 ∞ 0.7 B

dillig22-6 ∞ 229 I

dillig22-4 ∞ 7.2 B

dillig22-3 ∞ 13.6 B

nonlin gauss sum ∞ 49.9 B

abdu 03 312.3 0.9 B

exact iters 4 272.2 0.7 B

menlo park term orig 373.2 188.1 B

s mutants 20 252.6 2.2 B

dillig18 344.4 45.8 I

dillig22-5 224.7 13.1 B

phases true-unreach-call1 445.7 256.9 I

gj2007 true-unreach-call 342.8 150.1 I

half true modif 476.6 0.7 B

340 S. Prabhu et al.

We experimented with the benchmarks that are provided with FreqHorn-
2. These benchmarks have been taken from SV-COMP and the literature. There
were a total of 172 safe programs, of which we excluded 6 programs that had
nested conditions and function call which our tool does not support. We only
compare ELABor with its predecessor FreqHorn-2, as the latter has been
shown to outperform other data-driven tools on these benchmarks [12]. Our
experiments were performed by running 4 tasks in parallel, on a system with 16
cores of 2.40 GHz speed each, and total memory of 20 GB. We used a timeout of
600 s for each task. The tasks were run 10 times each, on both the tools, to handle
the stochastic nature of the tools. We ran FreqHorn-2 with the interpolants
option and a bound of 3. ELABor, on the other hand, was run without the
interpolants option (it is turned off by default), as it might be unnecessary to
employ multiple ways of getting behavioural candidates. The artifact submitted
with this paper contains both the tools, the benchmarks, and the instructions
and scripts to reproduce the results.

Results. Of the 166 benchmarks that we used, FreqHorn-2 could not generate
safe invariants for 13 programs in any of the runs. Apart from these, there were
11 programs which FreqHorn-2 missed on more than half of the runs. Of
these 24 programs in total, ELABor worked for 16 programs almost always (it
solved 14 in all 10 runs and for 2 more in 8 runs out of 10). Table 2 lists these
programs, along with the mean execution time (over successful runs) of the tools.
The symbol ∞ indicates a time out in all runs. The last column shows the reason
behind ELABor discovering a safe invariant: ‘B’ indicates the enhancement of
combining behaviours, and ‘I’ indicates the one of mining implications.

W.r.t. the average execution time, we say that one of the tool did better than
the other only if (i) the faster tool took less than half the time that the other
one, or (ii) the time difference was more than 100 s. ELABor outperformed
its predecessor on 31 programs, while for 8 programs it is FreqHorn-2 that
worked better. The scatter plot on the left in Fig. 3 compares the time taken

100 102 104 106

100

102

104

106

ELABor

F
re

q
H
o
rn

-2

100 102 104 106

100

102

104

106

ELABor with interpolants

F
re

q
H
o
rn

-2

Fig. 3. Scatter plots comparing execution time (in ms) of the tools

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 341

(in milliseconds) by ELABor (along the x-axis) and FreqHorn-2 (along the
y-axis). The slack for those 8 programs was mostly due to lemmas that the
interpolation engine provided upfront to FreqHorn-2, while we took a bit
longer in discovering them. We confirmed this by running ELABor with the
interpolants option—now there were only 3 programs for which FreqHorn-2
outperformed us. However, the additional time taken by the interpolation engine
gets reflected as points that were above the line, drifting closer to the line in the
scatter plot on the right in Fig. 3.

6 Conclusion and Future Work

This work builds upon a recently proposed idea of inferring inductive invariants
using a guess-and-check method, by sampling predicates, and its mutants, from
the input program source [13]. In addition to obtaining a seed set of candidates
from interpolation proofs of bounded safety [12], we show that a similar seed
set can be obtained by analyzing behaviours of the program. We also propose a
method to overcome a limitation of this guess-and-check method w.r.t. disjunc-
tive invariants, by looking for conditional invariants in the form of implications.

There are a number of interesting directions in which this work may be
extended. In particular, it would be worthwhile to explore the following:

– Guidance from counterexamples to adequacy. The current approach to deal
with the inadequacy of discovered lemmas is to simply look for more. It would
be useful to see how the property and the lemmas may together guide the
search for additional facts, e.g. using ideas from abductive inference [10].

– Refining candidates with disjunctions. In the present algorithm, a disjunctive
invariant candidate is either inductive, or is entirely useless. A method to
find out which disjunct needs refinement, and how may it be refined, would
certainly be helpful.

– Choosing between syntax and behaviours. Can there be some guidance in
deciding, at every stage of the algorithm, whether the missing lemmas are
more likely to be found through a syntactic search, or a behavioural one?

– Machine learning to refine sampling. Can machine learning technique be help-
ful in deciding when and how to nudge the probability distribution of candi-
dates sampling?

We plan to investigate some of these research directions as we go ahead.

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 22

2. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/978-3-642-18275-4_7

342 S. Prabhu et al.

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

4. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6 39

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM (1977)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 1979, pp. 269–282. ACM, New York (1979). https://
doi.org/10.1145/567752.567778

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1978, pp. 84–96. ACM, New York
(1978). http://doi.acm.org/10.1145/512760.512770

8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. J. Symbolic Logic 22(3), 269–285 (1957).
https://projecteuclid.org:443/euclid.jsl/1183732824

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Dillig, I.: Abductive inference and its applications in program analysis, verification,
and synthesis. In: Formal Methods in Computer-Aided Design, FMCAD 2015,
Austin, Texas, USA, 27–30 September 2015, p. 4 (2015)

11. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant
program invariants. In: Proceedings of the 22nd International Conference on Soft-
ware Engineering, pp. 449–458. ACM (2000)

12. Fedyukovich, G., Bod́ık, R.: Accelerating syntax-guided invariant synthesis. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 251–269.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 14

13. Fedyukovich, G., Kaufman, S.J., Bod́ık, R.: Sampling invariants from frequency
distributions. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017,
Vienna, Austria, 2–6 October 2017, pp. 100–107 (2017)

14. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6 29

15. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, pp. 499–512. ACM, New York (2016)

16. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 48

17. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
http://doi.acm.org/10.1145/512760.512770
https://projecteuclid.org:443/euclid.jsl/1183732824
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-89960-2_14
https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-642-31612-8_13

Efficiently Learning Safety Proofs from Appearance as well as Behaviours 343

18. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to dis-
cover polynomial and array invariants. In: Proceedings of the 34th International
Conference on Software Engineering, pp. 683–693. IEEE Press (2012)

19. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
pp. 614–630. ACM, New York (2016)

20. Sanderson, C., Curtin, R.: Armadillo: a template-based C++ library for linear
algebra. J. Open Source Softw. (2016)

21. Shafarevich, I.R., Remizov, A.O.: Linear Algebra and Geometry. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-30994-6

22. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. Form. Methods Syst Des. 48(3), 235–256 (2016)

23. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant generation
using splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 703–719. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 57

24. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6 31

https://doi.org/10.1007/978-3-642-30994-6
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31

	Efficiently Learning Safety Proofs from Appearance as well as Behaviours
	1 Introduction
	2 Related Work
	3 Notations and Background
	3.1 Syntax-Guided Invariant Synthesis
	3.2 Bootstrapping and Batch Checking

	4 Combining Syntax and Behaviours
	4.1 Behaviours
	4.2 Counterexamples to Induction (CTIs)
	4.3 Combining Behaviours and CTIs

	5 Experiments
	6 Conclusion and Future Work
	References

