
Reachability Verification of Rhapsody Statecharts

Kumar Madhukar
TRDDC, TCS

Pune, India
kumar.madhukar@tcs.com

Ravindra Metta
TRDDC, TCS

Pune - 411013, India
r.metta@tcs.com

Priyanka Singh
TRDDC, TCS

Pune - 411013, India
priyanka38.s@@tcs.com

R. Venkatesh
TRDDC, TCS

Pune - 411013, India
r.venky@tcs.com

Abstract—We present the first fully automated approach
for the verification of Rhapsody statecharts. IBM’s Rhapsody
framework is widely used in the automotive industry to model em-
bedded reactive systems. The reactive behavior is specified using
Rhapsody’s statechart formalism and controls the entire system.
Hence, it is crucial to ensure the safety properties of statecharts.
Therefore, we constructed a model-checking based approach
to verify state reachability, a fundamental safety property, of
Rhapsody statecharts. We implemented it in a prototype tool
using the model checkers CBMC and SPIN. This tool successfully
verified simple models, but failed to scale to industry models
due to the sheer complexity of the models. We then designed
and implemented a simulation based approach. This successfully
verified the simple models and the industry models, and found
a crucial bug in one of the industry models. In this paper, we
share both our model-checking and simulation approaches, their
implementation details and the experimental results.

I. INTRODUCTION

Software embedded in automotive systems needs to satisfy
critical safety and security requirements. Many countries and
companies mandate their automotive software to adhere to
stringent standards such as DO-178B and ISO26262. An
automotive software system typically consists of many subsys-
tems ranging from infotainment to engine control. All these
subsystems need to adhere to the strict safety requirements,
as even seemingly innocuous subsystems may impact the
safety and security of the entire system. For example, many
automotive infotainment systems provide GPS, telephone and
multimedia facilities. The GPS assistance is critical since
the GPS directions need to be displayed in time, and not
afterwards, and should be right on top of any other video being
played on the screen. Any bugs here may lead to improper GPS
assistance, which in turn may lead to an accident. Similarly, in
case of an emergency such as a crash, the car audio is required
to be muted before an emergency phone call has to be made
to an appropriate helpline.

Modeling frameworks are used for the specification of
requirements of such embedded systems. They make modeling
easier and promote early verification and validation of require-
ments through formal analysis. Rhapsody [6] is one of the
popular modeling frameworks used in the automotive industry.
IBM currently owns this tool. Rhapsody supports entire UML
and allows code to be embedded in the models. The language
of the embedded code can be chosen from C, C++ and
Java. Once a language is chosen for the embedded code,
Rhapsody’s code generator can generate code for that model
only in that language. In Rhapsody, statecharts [5] are used to
specify the reactive behavior of the system being modeled.
These statecharts are basically object oriented, concurrent,

hierarchical state machines (see Section II-A).

The automotive Rhapsody models, which we deal with,
use the Rhapsody statecharts with embedded C++ code. In
order to verify these statecharts for state reachability, one
needs to simultaneously take into account (a) the semantics
of the Rhapsody statecharts, (b) the semantics of the rest of
the UML constructs in the model and the interactions thereof,
and (c) the embedded C++ code. Therefore, in order to verify
such models, one needs to focus both on high level modeling
formalisms and the low-level code details at the same time.
This makes verification challenging and hardly scalable to
industrial models, as we show later in this paper.

Model checkers are the de facto tools of choice for the
verification of state machines and code [14]. There are many
useful verification tools for both models and code, built using
different model checkers ([13], [16]). All of them focus either
exclusively on high level models or exclusively on code, but
not on both. Further, these tools also focus on particular aspects
of the system under verification and need lot of fine tuning to
be successful on industrial systems [15]. To fully automatically
verify Rhapsody statecharts, one needs to verify the model
and code level details together. It is probably for this reason
that none of the existing model checkers support automated
verification of Rhapsody models.

In this paper we propose a new approach for verification
of these statecharts. In particular, we target the verification
of the state reachability property. A state machine is said to
satisfy this property if each state in it can be reached from its
initial state. Our first approach is based on model checking. For
model checking, we need a common representation for a given
Rhapsody model and the C++ code embedded in it. Since it is
hard to lift C++ code to model level, we translate the model
to C++ code with just enough details to faithfully capture the
Rhapsody semantics. For this, we first use the Rhapsody’s
built-in C++ code generator to translate the Rhapsody models
into C++ code. We then perform a static analysis of the C++
code to gather certain information about the statecharts. This is
the only way to gather the information as Rhapsody framework
does not provide a programmatic access to the models. We
then eliminate those implementation details of the generated
code that are irrelevant for verification and lift the code closer
to the models. This leaves us with a modified C++ code that
represents the original model in succinct and sufficient detail
to enable verification.

There are neither academic nor commercial model checkers
that can verify industrial C++ code. However, there are excel-
lent model checkers for C such as CBMC [12]. Therefore, we
translate the modified C++ code into C using the EDG’s C++ to

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops

978-0-7695-4993-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSTW.2013.73

96

C translator [19]. Next, to take care of the execution semantics
of Rhapsody models, we generate C code that mimics the
execution environment of Rhapsody (see Section II-A). At the
end of all this, we have C code that faithfully represents the
given Rhapsody model. We automated this entire process in
a prototype tool that produces the final C code from a given
Rhapsody model and also generates two drivers: one each for
CBMC and SPIN. Now the state reachability verification on the
original model translates to checking if a state variable takes
on particular values in the final C code. We accordingly invoke
CBMC and SPIN drivers to verify desired state reachability.
In our initial experiments, this approach did not scale to
even simple models. Then we did several optimizations to
represent the Rhapsody environment and semantics much more
succinctly in C. With these optimization, both CBMC and
SPIN successfully verified the simple models.

Next, we experimented the prototype on five client supplied
Rhapsody models that belong to an industrial automotive
infotainment system. SPIN scaled for one of the models and
did not scale for the others. CBMC did not scale for any of
the models. The failure of the model checkers to scale was
due to the sheer complexity of the models and the embedded
C++ code. We next designed a guided simulation approach
that generates a sequence of environmental inputs targeted at
driving the models to desired states. We coded this approach
as a part of our prototype. With this approach, our tool scaled
to all the five models and demonstrated the reachability to
all but one of the states. Upon manual inspection, we found
that this state indeed cannot be reached as the statechart waits
forever for a response that is ignored by the system due to
a design error. When we showed this to the developer, he
acknowledged the error and fixed the model. After this fix,
our tool demonstrated reachability of this state too.

To the best of our knowledge, our model checking and
simulation approaches are the first ever completely automated
approaches for the verification of Rhapsody statecharts. In the
remainder of this paper we detail our approaches, implemen-
tation and the experimental results. In Section II, we briefly
introduce Rhapsody, model checking, CBMC and SPIN. We
present our approach in Section III, the experimental results
in Section IV and we conclude in Section V.

A. Related work

Schinz et al. [2] developed the first ever Rhapsody UML
verification tool in 2004. It seems that Rhapsody allowed
programmatic access during those days for this tool interfaced
directly with Rhapsody; a feature not available in the current
version(s) of Rhapsody. This tool supports a restricted set of
UML constructs and needed manual assistance to successfully
verify their test models. In particular, the authors manually
constructed over-approximated models of the actual models to
suit verification, fixed the configuration of some components,
removed File I/O and so on. In contrast, our approach supports
all features of UML, is fully automated and verifies the actual
model as opposed to an over-approximation, thus avoiding
the problem of having to refine the abstraction in case of a
spurious counterexample. Further, the tool in [2] could verify
models containing 9-to-24 states and our tool verified models
containing 11-to-31 states.

There was another Rhapsody verification attempt [10],
which works quite similarly to the tool in [2]. This tool trans-
lates Rhapsody models into the intermediate format of IF [3]
and uses the backend analysis tools of the IF framework for
state reachability verification. In this work too, the authors had
to remodel their entire case study and manually prune many
parts of their subject model in order to successfully verify.
There have been quite a few other attempts at verification of
UML models similar to Rhapsody, such as VERTAF [1] and
LSC Verification [4]. We find that all these focus on a specific
subset of features for the verification and need lots of manual
assistance. In comparison, our approach is fully automated and
scales better.

II. BACKGROUND

Here, we present a very high level description of Rhapsody
statecharts and the model checkers CBMC and SPIN.

A. Rhapsody statecharts

IBM’s Rhapsody framework supports entire UML. How-
ever, the semantics of Rhapsody statecharts [5] are different
from that of UML statecharts. Interested readers may refer
to [17] to understand the differences. Here, we brief Rhap-
sody statecharts and their semantics. Rhapsody statecharts are
extensions of conventional labeled state transition systems.
The main extensions are hierarchy, concurrency and object-
oriented communications and actions. The label of a transition
is specified in the form e[c]/a, where e is an event (formally
called trigger), c is a condition (formally called guard) and
a is an action. For example in the statecharts of Fig 1, t0 to
t9 are all transitions. Such a transition is enabled if its source
state is active, event e occurs, condition c holds true and no
higher priority transition is enabled. Transition exiting lower
states in the hierarchy, get higher priority. Further, both c and
a can be any valid C++ code. Rhapsody also allows C and
Java code, but we restrict ourselves to the treatment of C++
code in this paper as all the models we deal with are in C++.

Fig 1 shows an example consisting of two Rhapsody
statecharts, Phone and Audio, which respectively control a
phone and an audio device. When the Phone and Audio
statecharts start executing, they will start in the states ON and
OFF respectively, as denoted by the source-less transitions t0
and t5. In Rhapsody, each event must be sent to some particular
object. An event can’t be broadcast. For example transition
t1 in Fig 1 sends the event mute to object aud, an Audio
object. Upon receiving mute, if aud is not in ON state, it will
simply drop that event as there is nothing to be done. On the
other hand if aud is in ON state when mute is received, then
it changes its state to MUTE by executing the transition t8.
All events raised by the system are stored in a event queue
maintained internally by Rhapsody’s execution environment.
In each step, this environment reads the event at the head of the
queue and sends it to its designated object. The environment
then waits until the chain of reactions triggered by the event is
completed. When the system reaches a state where in no more
transitions can be executed, then the environment fetches the
next event in the queue and dispatches it to its designated
object.

The main execution semantics of Rhapsody consist of the
notions of event queue, step, microstep and null transition.

97

Phone

ON CALL

DIALING

t0 :

t1 : pstart/ aud.mute();

t2 : ok/

t3 : dial/

t4 : fail/

(a) Statechart for Phone

Audio

OFF ON

MUTE

t5 :

t6 : astart/

t7 : unmute/

t8 : mute/

t9 : off/

(b) Statechart for Audio

Fig. 1. A Rhapsody Statechart Model

Rhapsody has an implementation of an event queue through
which the statecharts communicate. Any event generated for
any of the objects remains in this queue until Rhapsody’s
event dispatcher acts on it. Once the dispatcher dequeues the
event and sends it to the designated object, then the object’s
statechart reacts to the event, marking the beginning of a step.

The execution of a step proceeds in a sequence of mi-
crosteps. The first microstep of a step is the one in which
the reaction to the dispatched event is executed. If some
more transitions get enabled as a result of this execution,
then the second microstep takes place in order to execute
the newly enabled transitions. If some more transitions get
enabled due to the execution of the second microstep, then the
third microstep takes place to execute those transitions and
so on. Thus a sequence of microsteps is executed until there
are no more enabled transitions. This marks the end of the
step. During a step execution, the event dispatcher does not
dispatch any event until all the microsteps constituting the step
are completed. Once a step is completed, the event dispatcher
dequeues and dispatches the next event in the event queue
to the designated object, thus starting a new step. Therefore,
only the first microstep of each step consists of a transition
with a trigger(event) and rest of the microsteps consist only of
transitions which do not have any triggers. Such transitions,
which do not have triggers, are called null transitions.

For want of space, we can not describe the detailed
semantics here. The reader may refer to [5] for the same.

B. Model checking

A model checker is a tool that checks a given model M
for a desired property P across all paths in M. Here ‘model’
refers to any computation model including UML models, C
code and even assembly code. There are many commercial and
academic model checkers that check different kinds of models
using a variety of techniques for various kinds of properties
with varying degrees of success. For a comprehensive survey
of model checking techniques and tools, the reader may refer
to [14].

Of the freeware model checkers for C code, CBMC [12]
and BLAST [18] are the most popular and robust choices.
The SPIN [11] model checker also supports verification of C
code embedded in its specifications. These tools have been
around for more than a decade and are extensively used
in the academia and the industry. We chose to experiment
with CBMC and SPIN as they are better geared towards
state reachability verification of the C code that we produce

from Rhapsody models. CBMC and SPIN are freely available
for download respectively at [8] and [9]. These also provide
a comprehensive documentation about the respective model
checkers, including theoretical background, practical applica-
tions and usage instructions.

III. APPROACH

Rhapsody statecharts are a visual formalism to model
reactive behavior. While this formalism makes modeling easier,
its verification is a difficult task. The reason, as we discussed
earlier, is two-fold. The first problem is that Rhapsody allows
C++ code as a part of modeling the behavior in the form of
guards and actions. This mixture of code and state-transitions
makes it difficult to create an automated verification framework
for Rhapsody. The second problem is that Rhapsody does
not provide automated access to its data, thus prohibiting a
translation to any other formalism for which there are known
verification tools or techniques. We describe below our ap-
proach to resolve these two problems and analyze reachability
in Rhapsody models.

Fig. 2. Our approach description

Rhapsody framework has a code generator that generates
C++ code for any given Rhapsody model. We first generate
C++ code using the Rhapsody code generator and abstract (in
some cases, eliminate) parts of the generated C++ code that
do not affect reachability. We then translate this C++ code
to C using the Edison Design Group (EDG [19]) C++ to C
translator. In addition to this, we generate a set of C functions
to encode the Rhapsody execution semantics succinctly.

Our encoding is similar in spirit to Microsoft’s well known
Static Driver Verifier framework [16], which verifies Windows
device drivers for certain properties. This framework encodes
the entire Windows kernel in C. For each Windows kernel API,
the framework has a C function that faithfully represents the
semantics of the Kernel API, but without the implementation
details that are irrelevant for checking the properties of interest.
This encoding is a part of the reason behind SDV’s suc-
cess [16]. In a similar spirit, we encode Rhapsody’s execution
framework with a faithful representation in C, but without
the implementation details such as thread-spawning, mutex

98

for thread-safety and so on. This encoding is a part of the
reason behind the success of our attempt at the verification of
Rhapsody statecharts. For instance, in order to implement the
step semantics, we implement the event queue as a queue of
(event, object) pairs.

The second source of our abstractions comes from being
automotive domain specific. Typical automotive models consist
only of global objects such as AudioObject, VideoObject and
so on. The effect of their constructors can be precomputed
and their destructors do not impact state reachability at all (as
they get executed only during system termination). Therefore,
we begun our optimizations by precomputing the effect of
the constructors and then eliminating the constructors and
destructors. We further removed those parts of the code that
did not impact our reachability analysis. For example, there’s
a lot of animation code in the generated code files which
is unnecessary if the code is not being used to animate the
model in Rhapsody. The maximum benefit was achieved by
replacing the code of Rhapsody’s execution framework (called
OXF in Rhapsody) with our own code that faithfully captures
Rhapsody semantics. Our code is very concise as it does not
get into the low-level details that the OXF needs to implement.

Finally, to verify the translated C code along with our
functions that encode the execution semantics, we chose two
model checkers - SPIN and CBMC. CBMC is a bounded
model checker for C and therefore a natural choice. SPIN also
seemed to suit the task as it allows embedding of C code in a
Promela specification. Promela (Process Meta Language) [11]
is a high-level language, supported by SPIN, to specify system
descriptions.

The important aspects of our approach are illustrated
below:

• Queue Implementation - Rhapsody implements the
event queue by means of a set of ports where different
objects send their event to. In the Rhapsody generated
code, this send function is implemented differently for
cases when the objects generates an event for itself
and when it generates an event for some other object.
This is so for each object which is a part of the
model. This adds to the complexity of our analysis.
Therefore, we wrote a much simpler implementation
using arrays and defined standard queue operations
(enqueue, dequeue, isEmpty etc.) on it.

• Null Events - Rhapsody disallows execution of null
transitions if the number of times they execute in
a row crosses a certain limit. This limit can be
manually specified in the tool. Null transitions, as
defined earlier, are transitions which do not have
a trigger. The execution framework supports this
by calling functions pushNullTransition and
popNullTransition. These induce a chain of
calls to functions in the OXF execution framework
which are only needed for the internal book-keeping
of OXF. We avoid all this by introducing the notion
of a null event which is available only for a limited
number (as specified) of null transitions executing in
a row - as per the Rhapsody semantics.

• Verification Drivers for SPIN and CBMC - A mi-
crostep in Rhapsody executes by calling the func-

tion rootState_processEvent of each object
in some sequence. These in turn call other auxiliary
functions which are not important for our reachability
analysis. For example, an object executes a microstep
and sends notifications to other objects about some of
the changes occuring in that microstep. These notifi-
cations are unimportant for our analysis as all these
changes get captured in the state/data variables. The
OXF framework does not allow the freedom of limiting
the set of functions that execute in a microstep.
We achieved this with our own implementation of
(verification) drivers for SPIN and CBMC. Table 1
shows the pseudocode for our SPIN driver.

Algorithm 1 SPIN Verification Driver
c_code{ #include optimized_C_code };

/* variable declarations */

active proctype driver(){
c_code{ initialize to default };
if (queue is empty)
create an event non-deterministically
pick an object non-deterministically
enqueue (object, event) pair

else { skip; };
}

dequeue an event
dispatch event to the intended object
execute a step

set flag if desired state reaches

The algorithm above outlines the SPIN verification driver
generated by our tool. This driver is generated in Promela. The
c_code{} construct of Promela is what allows embedding C
code in a Promela specification. Since flag is set when the
desired state reaches, we attempt to validate the property that
the flag variable never gets set. This can be encoded as an
LTL (Linear Temporal Logic [20]) formula and SPIN allows
encoding of such formulae in a promela specification. The
CBMC driver, though generated in C, is structurally similar
to the SPIN driver.

These optimizations failed to scale beyond some simple
examples which we had manually created to test the approach.
The industry models that we got from our clients were con-
siderably bigger than the example models (see Section IV),
causing an exponentially larger search space. We could reduce
this by doing static analysis of the code using our in-house
static analysis tool for C. The essential idea is to allow gener-
ation of only those events which can be immediately reacted
upon, depending on the current state of each statechart. With
this modification, although CBMC still ran out of memory,
SPIN could verify reachability to all the states in one of the
components of our model. Both the techniques, however, failed
for a larger component.

In order to overcome this, we changed our approach and
started looking at simulation to justify (un)reachability of
states. The idea behind this was to restrict the behavioral

99

branching at certain points during the execution, in order to
force the system towards a desired state. As we were only
looking to analyze reachability, it made sense to statically find
the sequence of events leading to a desired state. However,
one should note that such an analysis may not be feasible for
a different class of properties such as repeated reachability.

For this analysis, we implemented a simulator which can
feed events in the system to force certain behaviors (or, equiv-
alently, paths). We compiled this guided simulator along with
the Rhapsody generated C++ code to get the final executable.
This approach scaled for all the components of our client
model. The experimental results are described in the following
section.

IV. EXPERIMENTATION

We first experimented the model checking approach. The
input to our tool is Rhapsody generated C++ code. The output
of our tool is the optimized C code, a set of C functions to
implement the Rhapsody OXF (execution) framework and the
verification drivers for CBMC and SPIN. To test our approach,
we first constructed eight simple models using various features
of Rhapsody and C++. Then we tried our tool on these simple
models, which both the CBMC and SPIN drivers generated
by our tool verified successfully. Next, we tested our approach
on five models from the automotive industry that correspond
to five different components of an infotainment system(see
Fig. 3): an FM Radio, a Next Generation Infotainment (NGI)
System, a Camera, an Audio device and a Connection Manager
which acts as a scheduler for resources shared among these
components - a speaker, for example.

Fig. 3. Infotainment system

The CBMC and SPIN drivers, generated for these models
by our tool, could not scale to the above industry models. To
improve the scalability, we designed an optimization based
on the following observation: in each step, any dispatched
event is useless if it cannot be reacted to in the immediate
microstep and, therefore, the verification drivers need not
explore such events during their analysis. We enhanced our
tool with this optimization by coding it in Java, using an in-
house static analyzer for C code. This implementation first
extracts the state-event relationship for the input model and
uses this information to restrict the verification drivers in each
step of the execution such that they explore only those events
that the system can react to in the immediate microstep. With
this optimization, we again ran our tool on the models. These
experiments were performed on a 2.43 GHz Intel i5 processor
with 2 GB primary storage (RAM). The analysis scaled to only
one of the models (FM Radio, with SPIN driver), but failed on

the rest. The experimental results are presented in Table I. The

Models #states LOC (Optimized C) SPIN CBMC
Simple Models 6-9 400-700 < 1 min < 3 min

FM Radio 14 7540 < 4 min OutOfMem
Others 11-28 39371-119725 OutOfMem OutOfMem

TABLE I. MODEL CHECKING EXPERIMENTATION DATA

analysis terminated in less than a few minutes on each instance
for which it scaled. The models for which the analysis did not
scale, both CBMC and SPIN drivers ran out of memory within
a couple of hours. The CBMC driver exhausted the memory
while trying to unwind for a depth of 1. (CBMC first unwinds
the loops in the input program for a user-provided unwinding
depth before checking for a property.)

We then implemented the simulation approach discussed
earlier. This involved guiding the execution of the code for the
models by analyzing the code further. In particular, we tried
to extract the sequences of events leading to a particular state.
This was quite helpful as we wanted to analyze only reach-
ability and we could guide the code towards a desired state
by providing only the necessary sequence of events. For this,
we developed our own simulator generator in C++. This first
analyzes the system to find the sequence of events that may
lead to a desired state and then generates a simulator, in C++,
that feeds the events to the system in the desired sequence.
For each of our test models, we compiled the corresponding
Rhapsody generated C++ code with the generated simulator
C++ code to get the final executable. We experimented this
approach on the simple models and the five industrial models.
The experiments were performed on a 2.43 GHz Intel i5
processor with 2 GB primary storage (RAM). The guided
simulation scaled for both the sets of models.

Models #states C++ LOC Sim Gen Sim Run
Simple Models 6-9 1632-2912 < 1 min < 1 min

FM Radio 14 5874 < 2 sec < 3 sec
NGI System 17 18683 < 3 sec < 3 sec

Connection Manager 31 23561 < 3 sec < 7 sec
Audio 11 24927 < 2 sec < 5 sec

Camera 28 68135 < 4 sec < 8 sec

TABLE II. SIMULATION EXPERIMENTATION DATA

Table II summarizes the results of this experiment. The
column C++ LOC denotes the number of lines of C++ code
(Rhapsody generated code and simulator). The columns Sim
Gen and Sim Run respectively refer to the time taken for the
generation of the corresponding simulator C++ code and the
running time of the final executable. As can be seen from the
table, the simulation approach demonstrated the reachability to
all states in each model within a few seconds per model. The
only exception was a state in the Connection Manager. Manual
analysis revealed that the state was indeed unreachable. The
reachability to this particular state was dependent on an event
which was getting generated a step too early. As per Rhapsody
semantics, events live exactly for one microstep once they
are dispatched to their destination object and hence cannot be
sensed in the next microstep. We reported this unreachability
to the developers as this could have been a source of error.
We later came to know that it was indeed erroneous and the
Connection Manager was corrected to rectify the error.

100

V. CONCLUSION

We developed and implemented two methods towards
automated verification of Rhapsody statecharts for state reach-
ability. Our model checking based approach did not scale
well to the industry models we experimented with, due to
the complexity of the models. The simulation based approach
scaled as it avoids having to deal with the complexity of the
models and relies on a guided event generation strategy.

In our model checking approach, SPIN scaled better than
CBMC. SPIN and CBMC implement different model checking
techniques and are also engineered differently. We are not
sure what would have happened if we had experimented
them on a different set of models. It is plausible that, with
additional abstractions, both SPIN and CBMC would have
scaled. Coming up with such abstractions is an interesting
future work.

The power of model checking lies in its ability to check
all the computation paths in the system to be verified, which
is also its bane for scalability. The power of simulation lies in
its ability to focus only on generation of sensible inputs and
thus avoiding the complexity of the system to be analyzed.
However, it is often hard to find input sequences to guide
the simulation. It seems like one needs a fine combination
of these two approaches. For instance, once may first run
simulation to prove some of the desired properties, then use
the simulation results to prune the model and then employ
model checking techniques to verify the pruned model for the
rest of the properties. We are currently working on such an
approach in the context of statecharts. Extending our work for
the verification of properties other than state reachability is
also an interesting line of research.

REFERENCES

[1] P. Hsiung, S. Lin, C. Tseng, T. Lee, J. Fu, W. See. VERTAF: an
application framework for the design and verification of embedded real-
time software. In IEEE Transactions on Software Engineering, vol. 30,
Oct. 2004, pp. 656-674

[2] I. Schinz, T. Toben, C. Mrugalla, and B. Westphal. The Rhapsody UML
Verification Environment. In Proceedings of the Software Engineering
and Formal Methods, SEFM 2004, pp. 174-183

[3] M. Bozga, S. Graf, I. Ober, I. Ober and J. Sifakis. The IF Toolset. In
Proceedings of the Software Engineering and Formal Methods, SEFM
2004, pp. 237-267

[4] B. Westphal. LSC Verification for UML Models with Unbounded
Creation and Destruction. Electronic Notes in Theoretical Computer
Science. 144, 3, Feb. 2006, pp. 133-145

[5] D. Harel and H. Kugler The RHAPSODY Semantics of Statecharts
(or, On the Executable Core of the UML In Integration of Software
Specification Techniques for Application in Engineering, 2004, pp. 325-
354

[6] E. Gery, D. Harel, and E. Palachi. Rhapsody: A Complete Life-
Cycle Model-Based Development System. In Proceedings of the Third
International Conference on Integrated Formal Methods, 2002, pp. 1-10.

[7] IBM Rational Rhapsody. URL http://www.ibm.com/developerworks/
rational/products/rhapsody/

[8] CBMC download site: http://www.cprover.org/cbmc/.
[9] SPIN download site: http://spinroot.com/spin/whatispin.html.

[10] OFFIS. Correct Development of Real-Time Embedded Systems: Project
case studies. URL http://www-omega.imag.fr/cs/IAI/IAI.php

[11] G. Holzmann. Spin Model Checker, the: Primer and Reference Manual
(First ed.). 2003. Addison-Wesley Professional.

[12] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2004.

[13] A. Kulkarni., R. Metta, U. Shrotri, R, Venkatesh. Scaling up Model-
Checking, A Case Study. In Next Generation Design and Verification
Methodologies for Distributed Embedded Control Systems. Proceedings
of the GM R&D Workshop, Bangalore, India. (2007)

[14] Jhala, R., and Majumdar, R. Software model checking. ACM Comput-
ing Surveys., 41(4). 2009. pp. 154

[15] Y. Choi. From NuSMV to SPIN: Experiences with model checking
flight guidance systems. Formal Methods in System Design. 30, 3. June
2007. pp. 199-216.

[16] T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: static driver
verification with under 4% false alarms. In Proceedings of the 2010
Conference on Formal Methods in Computer-Aided Design (FMCAD
’10). pp. 35-42.

[17] M. L. Crane and J. Dingel. UML vs. classical vs. rhapsody statecharts:
not all models are created equal. In Proceedings of the 8th international
conference on Model Driven Engineering Languages and Systems,
MoDELS 2005, p. 97-112.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
Verification with BLAST In Proceedings of the 10th SPIN Workshop on
Model Checking Software (SPIN), LNCS 2648, Springer-Verlag, pages
235-239, 2003.

[19] Edison Design Group. http://www.edg.com/index.php?location=c
frontend

[20] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science. 1977. IEEE
Computer Society Press, 4657.

101

