
Sequentialization Using Timestamps

Anand Yeolekar, Kumar Madhukar, Dipali Bhutada, and R. Venkatesh

Tata Research Development and Design Centre, Pune, India

Abstract. Given a run of a concurrent program and the underlying
memory model, we can view the shared memory accesses as a chronolog-
ical sequence of read and write operations. This chronological sequence
of shared memory accesses exactly characterizes the run. We present an
approach to sequentialization that captures these sequences by assigning
timestamps to the memory accesses. The axioms of the underlying mem-
ory model can be encoded as constraints on the timestamps, within the
sequentialized program, to generate precisely the set of traces permissible
by the original concurrent program. Experimental evaluation shows that
the encoding can be efficiently checked by the backend model checker.

1 Introduction

As multi-core processors gain widespread adoption, multi-threaded software is
being increasingly designed, developed and deployed. The exponential number of
interleavings exhibited by concurrent software poses a challenge during the vali-
dation phase of the software development lifecycle. Further, many architectures
support weak memory models allowing concurrent program behaviours that need
not conform to sequential consistency. Consequently, model checking is neces-
sary to exhaustively check the concurrent program for heisenbugs - bugs that lie
deep inside an interleaving and are near-impossible to detect or reproduce using
testing. In this work, we present an approach to sequentialization of concurrent
C programs to enable efficient checking of program assertions.

Consider two threads T1:x++; and T2:x--; , incrementing and decrementing
a shared variable, respectively. The threads issue a read operation of the shared
variable from memory and then a write to store the updated value. Let ri and
wi denote the read and write operation, resp., for thread i. Under Sequential
Consistency (SC) memory model [1], any run must satisfy the following condi-
tions: (i) program order be maintained among operations within a thread, and
(ii) the execution appears to be the result of a single sequential order across
threads (atomicity). The set of sequences of the shared memory read r and
write w operations, corresponding to all possible runs of the threads, can be
listed as: {〈r1, r2, w1, w2〉, 〈r1, r2, w2, w1〉, 〈r1, w1, r2, w2〉, 〈r2, w2, r1, w1〉}. Note
that we ignore sequences that differ only in a read sub-sequence permutation,
for e.g. 〈r2, r1, w1, w2〉.

It is well-known [3, 16] that the set of all correct sequences can be captured
as solutions to constraints derived from the program and the underlying mem-
ory model. For the example shown above, we obtain two relations from the



threads, namely po(r1, w1) and po(r2, w2), where po denotes the per-thread pro-
gram order between memory accesses. Additionally, as per condition (i) of SC
stated earlier, po(m1,m2) ⇔ hb(m1,m2) must hold for all m1,m2 belonging to
the same thread, in every correct sequence. We say that hb(m1,m2) holds in
a sequence if m1 precedes m2 in that sequence. Thus we obtain the constraint
hb(r1, w1)∧ hb(r2, w2), which can be solved to get precisely the sequences listed
above.

The hb relation is commonly referred to as the happens before relation in the
literature, relating memory accesses in an execution trace. The second condition
of SC specifies how a given sequence or trace can be interpreted: a read must
return the value of the freshest write, i.e. if a read r links to a write w then @w′ :
hb(w,w′) ∧ hb(w′, r), unless w,w′ write to different memory locations. Observe
that both the SC conditions can be expressed using the happens-before relation,
which can be naturally modeled if we could refer to the time of occurrence of
the shared memory operations. For example, if tm and tm′ denote the time of
occurrence of memory access m and m′ respectively, then hb(m,m′) is simply
the constraint tm < tm′ .

In this paper, we propose the use of timestamps for sequentialization. A
timestamp is a natural number that encodes the logical time of occurrence of
a shared memory access. We assign timestamps to shared memory accesses to
map reads with writes as permitted by the underlying memory model. The set of
permitted read-write maps is defined by the axiomatic specification of the mem-
ory model. It is this specification that we encode as constraints on timestamps,
at the source level.

We construct a sequentialized program, that encodes the constraints on
timestamps described above, as follows. We introduce global arrays to store
timestamps of writes along with their values. Timestamps are assigned non-
deterministically and constrained to be monotonically increasing. We encode
the requirements for SC by rewriting instructions accessing shared memory i.e.,
read and write operations. The program is instrumented as follows: (i) a write
access is redirected to an array location whose timestamp is larger than a locally
tracked current time, (ii) a read reads from a location with a timestamp closest
to the current time i.e. the timestamp of the successive write (in the array) must
be larger than current time. The sequentialization is completed by issuing calls
to the thread function bodies directly. Locks are modeled as shared variables.
Locking sets the variable provided the latest access to the variable was a reset,
and unlocking resets the variable. We show in Section 2.3 that the sequentialized
program exhibits precisely the set of behaviours of the concurrent programs.

We propose that using timestamps can naturally describe the runs of a con-
current program under any memory consistency model and yield a simple yet
efficient sequentialized program. We make the following contributions through
this work.

– A sequentialization approach based on timestamps that encodes axioms of
SC.

– A prototype tool, ConSequence, that implements the proposed encoding.



– An experimental evaluation demonstrating the usability of this approach.

The rest of the paper is organized as follows. In Section 2, we illustrate
our encoding under SC with an example, formalize the encoding and present an
argument for its correctness. Our experimental results are presented in Section 3.
We discuss the related work in Section 4 before concluding in Section 5 and listing
some immediate directions of future work.

2 Sequential consistency memory model

2.1 Illustrative example

#include <pthread.h>

#define N 3

int i=1, j=1;

void* f1(void* arg){

int x;

for(x=0;x<N;x++) {

i = i+j; }

}

void* f2(void* arg){

int x;

for(x=0;x<N;x++) {

j = j+i; }

}

int main() {

pthread_t t1,t2;

pthread_create(&t1,0,f1,0);

pthread_create(&t2,0,f2,0);

pthread_join(t1,0);

pthread_join(t2,0);

assert(i<21);

}

(a)

#define N 3

int i=1, j=1;

f1(){

int x;

for(x=0;x<N;x++) {

write_i(read_i()+read_j());}

}

f2(){

int x;

for(x=0;x<N;x++) {

write_j(read_j()+read_i());}

}

int main() {

sysinit();

procinit(); t1(); procend();

procinit(); t2(); procend();

sysend();

assert(i<21);

}

(b)

Fig. 1. Example concurrent program fib.c (a) and its sequentialization (b)

We illustrate our approach with an example, shown in Figure 1(a), that
computes the Fibonacci sequence with two threads, under SC. The assertion can
be violated only when context switches between the threads follow a certain order
(the reads and writes occur hand-in-hand). This makes the analysis challenging
for tools that rely on under-approximations such as write-bounding or context-
bounding.



The sequentialized code is shown in Figure 1(b). We use two procedures,
write var() and read var(), for every shared variable var, to instrument its
memory writes and reads, respectively. Thread creation in main function is re-
placed with direct calls to the thread function body, augmented with pre- and
post-processing code.

#define MAXW_i (N+1)
#define MAXW_j (N+1)
#define MAXT ((MAXW_i-1)+(MAXW_j-1)+1)

int *value_i,*value_j;
unsigned short

*ts_i,loc_i=0,count_i=0,last_i=0,
*ts_j,loc_j=0,count_j=0,last_j=0,
ct=0;

_Bool *free_i,*free_j;

void sysinit(){
value_i=(int *)malloc(

sizeof(int) * MAXW_i);
value_i[0]=i;

ts_i=(unsigned short*)malloc(
sizeof(unsigned short)*(MAXW_i+1));

ts_i[0]=0; ts_i[MAXW_i]=MAXT;
for (int k=1; k<MAXW_i+1; k++)

assume(ts_i[k-1] < ts_i[k]);

free_i=(_Bool *)malloc(
sizeof(_Bool)*MAXW_i);

free_i[0]=false;
/* similarly for j */ }

void procinit() {
ct=0; loc_i=0; loc_j=0;}

void procend() {
if (last_i<loc_i) last_i=loc_i;
if (last_j<loc_j) last_j=loc_j;}

void sysend() {
assume(last_i==count_i);
i=value_i[last_i];
/* similarly for j */ }

void write_i(int value) {
unsigned short loc=*;
assume(loc_i < loc < MAXW_i &&

free_i[loc] &&
ts_i[loc] > ct &&
value_i[loc] == value);

loc_i = loc;
free_i[loc] = false;
icount++;
ct = ts_i[loc];}

int read_i() {
unsigned short loc=*;
assume(loc_i <= loc < MAXW_i &&

ts_i[loc+1] > ct);
loc_i = loc;
if (ct<ts_i[loc]) ct=ts_i[loc];
return value_i[loc];}

/* similarly for write_j, read_j */

Fig. 2. Datastructures and auxiliary code for sequentialization

The auxiliary datastructures and code used for sequentialization is shown in
Figure 2. We assume fib.c is structurally bounded with loops executing N number
of times. Let MAXW var denote the maximum number of writes to shared memory
variable var that may occur along any program path, across all threads of the
program. In the example of Fig. 1(a), MAXW i = MAXW j = N+1, as each thread
writes to a variable exactly once in a loop iteration, apart from the initialization.
Additionally, we define MAXT as the total number of unique timestamps needed
for write accesses across all shared variables, where initializations of all shared
variables get the same timestamp.

For each shared variable, we use additional memory as explained here. Arrays
value var,ts var store the value of a write access and its timestamp, respec-
tively, and free var tracks if an index in value and timestamp arrays is available.
An index ceases to be available once it is written to. We refer to the three arrays
as a timestore for the shared variable. Auxiliary variable count var records the
number of writes and last var tracks the largest index accessed by a read or
write in each timestore. The variable ct, common to all shared memory variables



of the concurrent program, tracks the time of the latest memory access issued
by a thread procedure. Note that ct is updated locally by each thread, though
declared as a global variable.

Procedure sysinit() initializes each timestore to non-deterministic values
(timestamps are bounded by the respective maximum number of writes along
any path) through malloc calls. It further adds the constraint that timestamps
in ts var increase strictly monotonically.

We explain the write and read instrumentation scheme wrt shared variable i

of Fig. 1(a), presented in the procedures write i() and read i() of Fig. 2. In-
tuitively, in the sequentialized program, a write advances the local clock to allow
for interfering writes from other threads to happen. We select an empty loca-
tion by non-deterministically advancing from the current location loc i in the
timestamp array and store the value (value i[loc]==value). We also add a con-
straint to ensure that this write occurs after the current time ct (ts i[loc]>ct).
A read in the sequentialized program, may return the value at any index of the
timestore, provided this is the most recent write relative to the read. We first
select a write in the timestore array by non-deterministically advancing from
the last accessed (read or write) location by this thread. Next, to ensure that
this is the most recent write relative to the read, we add a constraint that the
successive write occurs after the current time (ts i[loc+1]>ct), which is intu-
itively the time at which the read happens. Recall that the timestores are sorted
on timestamps a-prióri ; this guarantees the succession of writes. Note that an
explicit assignment of timestamps to read accesses is not required to encode the
aforementioned constraint; we thus do not assign timestamps to read accesses.

The procedure procinit() resets variables ct and loc i, loc j. The pro-
cedure procend() tracks the last write location updated by thread procedures.
Finally, procedure sysend() ensures that writes are stored contiguously in the
timestore by adding the constraint last==count for each shared variable and
finally reinstates the shared variables.

value i[] ts i[] free i[]

0 1 0 false
1 3 2 false
2 8 4 false
3 21 6 false
4 - 7 -

value j[] ts j[] free j[]

0 1 0 false
1 2 1 false
2 5 3 false
3 13 5 false
4 - 7 -

Fig. 3. Datastructures populated by the counterexample produced by Cbmc

The resulting sequentialized program can be analyzed by any sequential
model checker such as Cbmc [6]. Figure 3 shows how the datastructures are
populated by the counterexample returned by Cbmc, violating the assertion,
for N=3.



2.2 Formalization

Let PC be a structurally bounded concurrent C program consisting of threads
T1, .., Tn, invoking procedures f1, .., fn, respectively, using the pthreads API. Let
V denote the set of variables shared by the threads. We assume that procedure
main invokes the threads and waits for the threads to join, followed by an
assertion φ to be checked. Let Gk denote the unfolded control flow graph of
thread id k, with each statement containing at most one read r or write w
access to a shared variable. We denote a memory access by m when we do not
distinguish between a read or write. We use the notation mv to represent the
memory access m operates on the shared variable v.

Definition 1. The per-thread program order po is a relation that statically or-
ders memory accesses.

∀m,m′, path(m,m′) ⇔ (m,m′) ∈ po (1)

where path(i, j) holds iff there is a path from i to j in Gk.

We encode po in terms of happens-before relation ĥb, i.e hb (stated in Sec. 1)
restricted to same-thread memory accesses, as follows.

∀m,m′, po(m,m′) ⇔ ĥb(m,m′) (2)

Any interleaving or trace of PC is a sequence τ of memory accesses that
is a solution to the po constraints encoded as the ĥb relation (Eqn. 2). The
interpretation of τ , in terms of the values of the memory accesses, comes from
the underlying memory model as a read-from relation.

Definition 2. The read-from relation rf maps every read to a write in τ .

Under SC, rf enforces the condition that in a trace, a read returns the value
of the most recent write to the same variable. We refer to this condition as
atomicity.

We encode rf in terms of the happens-before relation:

∀r ∈ τ,∃w | val(r) = val(w) ∧ hb(w, r) ∧ @w′ : hb(w,w′) ∧ hb(w′, r) (3)

where val(.) returns the value of the memory access and we interpret hb(i, j)
over the trace as i precedes j in τ .

Timestamps allow us to model the hb relation naturally and succinctly. In
fact,

∀m,m′, hb(m,m′) ⇔ tm < tm′ (4)



Sequentialization The sequentialization is presented in example Fig. 1(b) and
2. The listing in Fig. 2 encodes the SC conditions stated in Eqn. 2 and 3, in
procedures read and write.

In the next subsection, we show that the encoding correctly captures these
conditions in terms of timestamps (Eqn. 4).

Note that in Eqn. 4, the inequality need not be strict when m′ is a read
access. It suffices to have distinct timestamps for writes. As an optimization,
wherever possible, we allow a read access to implicitly acquire the timestamp of
the preceding memory access, whether read or write.

2.3 Correctness of the sequentialization

In this section we take a closer look at the auxiliary code for sequentialization
shown in Figure 2. Recall that the timestore records writes from all threads in a
single global order, obtained by sorting the timestamps a priori. Also, procedures
read and write are the ones that encode the axioms of the underlying memory
model, when accessing timestore.

The intra-thread program order, encoded as constraints on timestamps, is
preserved through (i) the constraint ts[loc]>ct when writing and ct getting
updated to ts[loc], and (ii) advancing ct when reading in the future.

Lemma 1. The conditions listed above guarantee program order between per-
thread memory accesses.

Proof. Consider m,m′ | (m,m′) ∈ po. When m′ is a write access, then condition
(i) ensures that tm < tm′ as a write always updates ct to a larger value. Note
that ct, intuitively the current time, is at least as large as tm when the memory
access m has occurred. When m′ is a read, the timestamp of m′ is either the same
as ct (when reading in the past) or advanced (when reading in the future) as per
condition (ii). This ensures tm <= tm′ (note that the equality on timestamps
is an optimization not violating SC, as described earlier). Thus the proposed
sequentialization guarantees the per-thread program order.

The atomicity condition of SC is preserved by (i) the constraints iloc<loc

and iloc<=loc when writing and reading, respectively, and (ii) the constraint
ts i[loc+1]>ct when reading.

Lemma 2. The conditions (i) and (ii), above, guarantee atomicity under SC.

Proof. The variable ct also accounts for thread interference. Whenever a read
maps to a write of a different thread, the timestamps of the read and write are
compared. If the write has occurred in the past relative to the read, we ensure
the atomicity condition of SC by constraining the successive write in global order
to occur after this read, through the constraint ts i[loc+1]>ct. If the write is
located in the timestore in the future wrt. this read, then this implies that the
read should have occurred after this write and before the subsequent write (in
global order); thus the current time, which is the time this read happens, is
updated to match the write’s time, again guaranteeing atomicity.



The existential quantifier stated in the SC atomicity condition is handled im-
plicitly in our implementation by sorting the timestore during the initialization.
The timestore reflects the write serialization to main memory i.e. the sequence
of writes to main memory as agreed upon by all threads.

To summarize, shared memory read and write operations are constrained
exactly according to the axioms of the memory model. The runs of the sequen-
tialized program can be obtained by solving the read and write constraints in
addition to the program logic. This set of runs exactly corresponds to the set
of runs of the parallel program, since the runs of the sequentialized program
are exactly the solutions to the system of constraints of the axiomatic memory
model, encoded at source level.

Since our sequentialization approach does not impose (or relax) any other
constraints, the only constraints present in the sequentialized program are the
memory model axioms which define the correct behavior. Therefore, the trans-
formation precisely captures correct behavior. The approach easily generalizes
to a framework where one can plug the memory model axioms, akin to a library
call, to obtain a transformation corresponding to a different memory model.

Corollary 1. The proposed encoding correctly captures the constraints of SC at
the source level i.e. the sequentialization exactly encodes the behaviours of the
the concurrent program.

3 Experiments

We have implemented the timestamp-based sequentialization approach in a pro-
totype tool ConSequence. Given a structural or unwind bound u, ConSequence
transforms the multi-threaded C code by instantiating a header file from a tem-
plate, which can be viewed as a library that replaces thread API calls. Read
and write accesses to shared memory variables are identified using PRISM1and
replaced with calls to respective procedures. ConSequence automatically com-
putes the maximum number of writes for every shared variable. Thread creation
and joining calls are replaced with calls to thread procedures with pre and post
processing code. ConSequence uses Cbmc to check assertions in the resulting
sequentialized program (other model checkers can be used). For efficient per-
formance with Cbmc, ConSequence implements several tweaks/optimizations
during the sequentialization.

Table 1 shows the comparison between ConSequence, MU-CSeq 0.3 [18],
Cbmc 5.5 [6], Corral [2] and CIVL [15]. Though MU-CSeq 0.3 comes with Cbmc
4.9 by default, in order to have an unbiased evaluation, we have run both Con-
Sequence and MU-CSeq with Cbmc 5.5 as the backend model checking tool.
The benchmarks have been selected from the concurrency category of verifica-
tion tasks at SV-COMP 2016 [4], except the ones numbered 4 and 10 that are
synthetic. inc-dec has 2 threads and one shared variable incremented and decre-
mented under a lock, in a loop. 3var has 3 shared variables with two threads

1 A static analysis framework developed at TRDDC, Pune [11, 5].



Table 1. Results for Sequential Consistency

S. No. Benchmark Unwind Assertion ConSequence MU-CSeq 0.3 Cbmc 5.5 Corral CIVL

1. stateful01.c 1 safe 0.17 0.53 1.18 53.71 1.72

2. stateful01.c 1 unsafe 0.17 0.52 1.07 47.64 1.72

3. fib bench longer.c 7 safe 2.8 17.12 17 timeout timeout

4. 3Var-nolock-2threads.c 4 safe 0.65 38 7.21 16.5 18.4

5. 27 Boop.c 10 unsafe 1.1 52.7 2.75 error timeout

6. fib bench longest.c 12 safe 130 timeout timeout timeout timeout

7. fib bench longest.c 12 unsafe 101 543.6 749 error timeout

8. peterson.c 60 safe 1.5 42.9 15.3 2.07 1.61

9. szymanski.c 21 safe 2.30 45.02 7.5 1.91 1.65

10. inc-dec-lock-2threads.c 9 safe 8.9 44.5 timeout timeout 4.8

11. dekker.c 9 safe 6 37 4.94 error timeout

incrementing and decrementing the variables in a loop. For every benchmark,
we report the unwinding depth chosen, state whether the benchmark was safe or
unsafe for the chosen unwinding, and list the time taken (in seconds) by the tools
to analyze the benchmark correctly. We set a timeout of 60 seconds for these
experiments, except for fib bench longest program (rows 6 and 7) where we
set a timeout of 900 seconds. All the benchmarks, except fib bench longest,
were run with the largest possible unwind such that at least 3 out of 5 tools run
to completion, i.e. we allowed no more than two tools to time out. The term
error indicates that the tool either crashed, or terminated without producing
the correct result. For the comparison to be unambiguous, the reported values
of time are in fact the time taken by the underlying decision procedure in the
analysis, for all the tools except CIVL. In case of CIVL we could not deter-
mine the time taken by the decision procedure separately, and hence we have
reported the total time taken. We conducted our experiments on an Intel Xeon
2.2 GHz 32-core machine with 20 GB RAM. As seen from Table 1, ConSequence
outperforms all other tools on both safe and unsafe instances. The benchmark
programs, their sequentialized version (as produced by ConSequence), the exact
commands used to invoke the tools, and the corresponding log files are available
at http://www.cmi.ac.in/~madhukar/ConSequence/.

The graphs shown in Fig. 4 compare the number of variables and clauses
generated by ConSequence and MU-CSeq (by the backend decision procedure of
Cbmc, in both the cases), during the analysis of benchmarks shown in Table 1.
Our encoding consistently generates fewer variables and clauses, explaining the
order of magnitude reduction in the model checking time with ConSequence.

4 Related work

The idea of sequentialization was proposed by Qadeer and Wu [14] with the
motivation to leverage analysis techniques developed for sequential programs. Lal
and Reps [13] proposed a sequentialization for a given bound on context switches.
Their scheme implemented a non-deterministic scheduler by instrumenting the
code and storing the program state at each switch. An improved version of this
algorithm was implemented in [7]. Inverso et al. proposed a further enhancement



0 2 4 6 8 10 12

104.5

105

105.5

Benchmarks in Table 1

N
o
.

o
f

V
a
ri

a
b
le

s

ConSequence

MU-CSeq 0.3

0 2 4 6 8 10 12

105

106

Benchmarks in Table 1

N
o
.

o
f

C
la

u
se

s

ConSequence

MU-CSeq 0.3

Fig. 4. Plots comparing the number of variables (left), and the number of clauses
(right), as reported by the backend decision procedure in ConSequence and MU-CSeq
0.3, for the benchmarks shown in Table 1.

[8, 9] combining [12] and bounded model checking. Recently, Tomasco et.al. [19]
proposed a new technique for sequentialization that bounds the number of shared
memory write accesses. This approach explores an orthogonal set of interleavings
compared to the earlier context-bounding approaches.

Tomasco et.al. [19] propose memory unwinding, i.e. a sequence of write op-
erations into the shared memory. The technique guesses the sequence and sim-
ulates the executions of a multi-threaded program according to any scheduling
that respects it. However, it bounds the total number of write operations into
the shared memory. To track writes, they use arrays and duplicate the shared
memory state (of unmodified variables) each time a write occurs in a thread
(read-explicit scheme), or use pointers to track the last relevant write at each
memory location (read-implicit scheme). The main difference is how time is
stored and used to form constraints: in [19], the array location implicitly rep-
resents time whereas we use an auxiliary array to explicitly store timestamps.
The advantage of our encoding is that the successive write is actually stored in
the next location. This avoids costly duplication of the read-explicit scheme and
maintaining pointers in the read-implicit scheme, scaling better as the number
of memory accesses and/or threads increases. Further, linking constraints can
be naturally and compactly expressed with respect to timestamps instead of
locations of (arrays representing) shared memory.

The memory unwinding technique has been extended further [20] to use
timestamps and for the analysis of TSO and PSO [21]. The authors view a
concurrent program as two independent subsystems, separating computation
(individual threads) from communication (shared memory). This is similar in
spirit to our approach but we differ in the encoding and implementation details.
This reflects as an order of magnitude reduction in both the number of clauses
and the number of variables for the benchmarks (see Fig. 4).



Partial orders employing memory model axioms to link read and write events
are presented in [16, 3, 10]. A two-stage approach involving intra-thread sum-
marization and composition under sequential consistency is presented in [16, 17].
The method constructs a concurrent control flow graph (as part of an interfer-
ence skeleton) to discover intra-thread causal ordering of events. The linking
phase gives rise to redundant pairing of read-write events, requiring pruning us-
ing dataflow analysis. In contrast, our approach works at source-level, provides
a syntactic transformation under SC, and does not require any pruning of con-
straints. Several sequential program analysis techniques can be applied on the
transformed program including procedure summarization.

5 Conclusion and future work

We have presented an approach to sequentialization of concurrent programs that
uses timestamps to map reads with appropriate writes. The possible read-write
maps, defined by the axiomatic memory model, are encoded as constraints over
the timestamps. The solutions to these constraints yield traces that precisely
capture all valid interleavings of the concurrent program. Our encoding, based
on timestamps, naturally captures the semantics of memory models expressed as
axiomatic composition rules on reads and writes. Further, the encoding is com-
pact, simple and efficiently analyzable by a bounded model checker like Cbmc.

The use of model checkers to explore interleavings encoded as constraints on
timestamps has the potential to face state space explosion problem. In particular,
the technique may explore redundant orders of writes whenever the number of
writes produced some choice of paths is less than the (statically) allocated space
in the timestore. Further, when the size of shared memory is large, such as
when entire arrays are shared, the timestores may become prohibitively large
to analyze. Another limitation is that the programs need to be structurally
bounded, which effectively bounds the number of threads by bounding loops
and recursive function calls. However, given that bounded model checking is the
most popular form of model checking used in the industry, this limitation may
be acceptable in practice.

The future steps for this work are:

– Improve tool support for more thread operations from posix-API.
– Optimize the timestamps space by assigning the same timestamps to inde-

pendent writes (or fixing their order of exploration). Note that the size of
timestamps directly affects the model checker’s state space.

– Use invariants to reduce the timestore size.
– Extend the work to support relaxed memory models i.e. program order and

atomicity relaxation.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Computer 29, 66–76 (1995)



2. Akash Lal, Shaz Qadeer, S.L.: Corral: A solver for reachability modulo theo-
ries. Tech. rep. (January 2012), https://www.microsoft.com/en-us/research/

publication/corral-a-solver-for-reachability-modulo-theories/

3. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Computer Aided Verification. pp. 141–
157. Springer (2013)

4. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on SV-COMP 2016). In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 22nd International Conference, TACAS 2016, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. pp. 887–
904 (2016)

5. Chimdyalwar, B., Kumar, S.: Effective false positive filtering for evolving soft-
ware. In: Proceedings of the 4th India Software Engineering Conference. pp. 103–
106. ISEC ’11, ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/
1953355.1953369

6. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol.
2988, pp. 168–176. Springer (2004)

7. Fischer, B., Inverso, O., Parlato, G.: Cseq: A concurrency pre-processor for se-
quential c verification tools. In: Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on. pp. 710–713. IEEE (2013)

8. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded c programs via lazy sequentialization (2014)

9. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-cseq: A lazy
sequentialization tool for c. In: Tools and Algorithms for the Construction and
Analysis of Systems, pp. 398–401. Springer (2014)

10. Kahlon, V., Gupta, A., Sinha, N.: Symbolic model checking of concurrent programs
using partial orders and on-the-fly transactions. In: Computer Aided Verification.
pp. 286–299. Springer (2006)

11. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded
code base: An experience. In: Proceedings of the 4th India Software Engineering
Conference. pp. 99–102. ISEC ’11, ACM, New York, NY, USA (2011), http://
doi.acm.org/10.1145/1953355.1953368

12. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Computer Aided Verification. pp. 477–
492. Springer (2009)

13. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. Formal Methods in System Design 35(1), 73–97 (2009)

14. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: ACM SIGPLAN No-
tices. vol. 39, pp. 14–24. ACM (2004)

15. Siegel, S.F., Dwyer, M.B., Gopalakrishnan, G., Luo, Z., Rakamaric, Z., Thakur, R.,
Zheng, M., Zirkel, T.K.: Civl: The concurrency intermediate verification language.
Tech. Rep. UD-CIS-2014/001, Department of Computer and Information Sciences,
University of Delaware (2014)

16. Sinha, N., Wang, C.: Staged concurrent program analysis. In: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering. pp. 47–56. ACM (2010)

17. Sinha, N., Wang, C.: On interference abstractions. In: ACM SIGPLAN Notices.
vol. 46, pp. 423–434. ACM (2011)



18. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq: Sequen-
tialization of C Programs by Shared Memory Unwindings, pp. 402–404. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

19. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying con-
current programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, vol. 9035, pp. 551–565. Springer Berlin Heidelberg (2015)

20. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying concur-
rent programs by memory unwinding. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 551–565. Springer
(2015)

21. Tomasco, E., Nguyen Lam, T., Fischer, B., La Torre, S., Parlato, G.: Separat-
ing computation from communication: A design approach for concurrent program
verification (2016)


